多自由度动力学基础
- 格式:ppt
- 大小:2.68 MB
- 文档页数:32
弹簧小球模型知识点总结一、弹簧小球模型的基本原理弹簧小球模型的基本原理是利用弹簧的弹性力和小球的质量产生共振效应,以研究系统的动力学特性。
弹簧小球模型可以简化为单自由度系统或多自由度系统,分别用来研究不同的力学问题。
1. 单自由度弹簧小球模型单自由度弹簧小球模型由一条弹簧和一个小球组成,小球在弹簧的作用下可以进行简谐振动。
当外力作用在小球上时,小球受到外力作用产生振动,弹簧的弹性力会对小球产生反作用力,最终形成小球的振动。
单自由度弹簧小球模型的动力学方程可以用简单的力学原理进行建立,是研究简单振动问题的基础。
2. 多自由度弹簧小球模型多自由度弹簧小球模型由多条弹簧和多个小球组成,可以用来研究复杂的多自由度系统的力学特性。
多自由度系统的动力学方程可以通过拉格朗日方程或哈密顿原理进行建立,并可以通过数值模拟方法进行求解。
多自由度弹簧小球模型在工程学和物理学中有广泛的应用,可以用来研究复杂的振动问题和非线性动力学问题。
二、弹簧小球模型的动力学方程弹簧小球模型的动力学方程是描述系统运动规律的基本方程,可以用来求解系统的振动特性和响应。
单自由度弹簧小球模型的动力学方程可以表示为简谐振动方程,多自由度弹簧小球模型的动力学方程则可以表示为多自由度振动方程。
1. 单自由度弹簧小球模型的动力学方程对于单自由度弹簧小球模型,可以用简单的力学原理建立动力学方程。
假设弹簧的劲度系数为k,小球的质量为m,外力为F(t),则小球的运动方程可以表示为:m*a(t) = F(t) - k*x(t)其中,a(t)为小球的加速度,F(t)为外力,k为弹簧的劲度系数,x(t)为小球的位移。
在无外力的情况下,小球的振动方程可以简化为简谐振动方程:m*a(t) = -k*x(t)这是一个典型的简谐振动方程,可以通过求解微分方程来得到系统的振动特性和响应。
2. 多自由度弹簧小球模型的动力学方程对于多自由度弹簧小球模型,可以通过利用拉格朗日方程或哈密顿原理建立动力学方程,并通过适当的数值模拟方法进行求解。
多自由度振动系统的动力学模型构建引言:多自由度振动系统是指由多个自由度的质点组成的系统,在这样的系统中,每个自由度都可以独立地进行运动。
动力学模型的构建是研究和理解振动系统行为的基础。
本文将介绍多自由度振动系统动力学模型的构建方法及应用。
一、质点模型多自由度振动系统的最基本组成单位是质点。
质点的运动可以用坐标形式以及质点的质量、刚性等参数来描述。
对于一个有n个自由度的振动系统,可以通过将每个自由度的质点模型相连接构成整个系统。
二、约束关系与广义坐标在多自由度振动系统中,质点之间相互约束,其运动不再是自由的,而是受到约束的影响。
为了描述约束关系,引入广义坐标来表示系统各个自由度的相对运动。
广义坐标是将实际坐标通过约束条件变换得到的坐标表示。
三、拉格朗日方程与振动方程拉格朗日方程是多自由度振动系统的基本动力学方程。
通过对系统的动能和势能进行推导和求导,可以得到描述系统运动的拉格朗日方程。
对于振动系统而言,通过求解拉格朗日方程,可以得到系统的振动方程,进一步描述系统的运动行为。
四、模态分析与特征频率模态分析是研究振动系统固有特性的方法。
对于多自由度振动系统,可以通过模态分析得到系统的固有模态和特征频率。
固有模态是指系统在自由振动时,各个自由度的振动模式。
特征频率是指系统在不同固有模态下的振动频率。
五、系统的耦合与动态响应多自由度振动系统中的各个质点之间存在耦合关系,一个自由度的振动会对其他自由度的振动产生影响。
通过研究系统的耦合关系,可以得到系统的动态响应。
动态响应是指系统对外界激励的响应行为,可以通过求解振动方程得到。
六、应用案例:建筑结构振动多自由度振动系统的应用广泛,尤其在建筑结构的振动研究中起到了重要作用。
通过对建筑结构的多自由度振动系统进行建模和分析,可以评估结构的稳定性、抗震性能等。
振动模型的构建和分析可以提供设计和改进建筑结构的依据。
结论:多自由度振动系统的动力学模型构建是研究振动系统行为的关键步骤。
船体振动基础1第章多自由度系统的振第2章多自由度系统的振动一、引言二、两自由度系统的振动三、多自由度系统的振动四、振动方程建立的其他方法2有阻尼的多自由度系统振动1、拉格朗日方程式1、拉格朗日方程式P38拉格朗日法是建立微分方程一种简单的方法:先求出系统的动能、势能,进而得出质量矩阵和刚度矩阵.优点:系统的动能和势能都是标量,无需考虑力的方向。
141、拉格朗日方程式P38拉格朗日第二类方程式适用于完整约束的系统。
完整约束完整约束:当约束方程本身或约束方程通过积分后可以下式所示的形式表示时,称为完整约束。
不完整约束:当约束方程本含有不能积分的速度项时,系统的约束称为不完整约束。
具有不完整约束的系统,系统的自由度不等于广义坐标数自由度数小于广义坐标数于广义坐标数,自由度数小于广义坐标数。
151、拉格朗日方程式P3811•位移方程和柔度矩阵P40对于静定结构,有时通过柔度矩阵建立位移方程比通过对于静定结构有时通过m1x1x2以准静态方式作用在梁上。
梁只产生位移(即挠度),不产生加速度。
的静平衡位置为坐标P1=1 f11 f21 f12P2=1 f22(1)P1 = 1、P2 = 0 时 m1 位移:x1 = f11 m2 位移:x2 = f 21 (3)P1、P2 同时作用 m1 位移: 位移 x1 = f11 P 1 + f12 P 2 m2 位移:x2 = f 21 P 1 + f 22 P 2(2)P1 = 0、P2 = 1 时 m1 位移:x1 = f12 m2 位移:x2 = f 22P1 m1 x1 x2 P2 m2P1=1 f11 f21 f12 P1 m1 x1P2=1 f22 P2 m2 x2P 同时作用时 1、P 2 同时作用时:x1 = f11P 1 + f12 P 2 x2 = f 21P 1 + f 22 P 2矩阵形式 X = FP 矩阵形式:⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦f ij 柔度影响系数f12 ⎤ f 22 ⎥ ⎦⎡ f11 F=⎢ ⎣ f 21⎡P 1⎤ P=⎢ ⎥ ⎣ P2 ⎦物理意义: 系统仅在第 j 个坐标受到 单位力作用时相应于第 i 个坐标上产生的位移柔度矩阵P1 m1 x1P2 m2 x2P1(t) m1 m2P2(t)&1 m1 & x&2 m2 & xX = FP⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P 1⎤ ⎢P ⎥ f 22 ⎥ ⎦⎣ 2 ⎦当P 1、P 2 是动载荷时 集中质量上有惯性力存在⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P && 1 (t ) − m1 x1 ⎤ ⎢ P (t ) − m & ⎥ f 22 ⎥ & x 2 2⎦ ⎦⎣ 2⎡ x1 ⎤ ⎡ f 11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21位移方程:f 12 ⎤⎛ ⎡ P1 (t ) ⎤ ⎡m1 ⎜⎢ −⎢ ⎥ ⎥ ⎜ f 22 ⎦⎝ ⎣ P2 (t ) ⎦ ⎣ 0&1 ⎤ ⎞ 0 ⎤⎡ & x ⎟ ⎥ ⎢ ⎥ &2 ⎦ ⎟ m2 ⎦ ⎣ & x ⎠&& ) X = F ( P − MXP1(t) m1 m2P2(t)⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦⎡P 1 (t ) ⎤ P=⎢ ⎥ P ( t ) ⎣ 2 ⎦&1 m1 & x&2 m2 & x位移方程 位移方程:&& ) X = F ( P − MX也可按作用力方程建立方程:&& + KX = P MX刚度矩阵&& + X = FP FMX柔度矩阵与刚度矩阵的关系 柔度矩阵与刚度矩阵的关系:&& KX = P − MX若K非奇异F=K−1FK = I&& ) X = K −1 ( P − MX应当注意:对于允许刚体运动产生的系统(即具有刚体自由度的系统) , 柔度矩阵不存在。
石家庄铁道大学SHIJIAZHUANG TIEDAO UNIVERSITY《振动理论》课程论文培养单位_ 机械工程学院学科专业_ 机械电子工程课程名称振动理论任课教师李韶华学生姓名赵学号提交日期 2010.01.17三自由系统的动力学分析摘要工程上较复杂的振动问题多数需要用多自由度系统的振动理论来解决。
我们熟悉的教材上给出的都是理论求解的方法,本文旨在进行三自由系统的动力学分析。
本文将先分析三自由系统的固有振动,其中采用大家熟悉的振型叠加法研究系统的响应,关键是利用Matlab软件求解三自由系统的理论解与数值解,绘图并分析两者的差异和规律。
关键词:三自由系统 Matlab 理论解数值解AbstractOn the engineering ,more complicated vibration problem need to use multi-freedom degree system to solve. The teaching material that we acquaint with offer the theory method. This text aims at carrying on the dynamics analysis of three-free systems. This text will analyze the proper vibration of three free systems first and adopt fold responding to research system, the key is the theory solution and number-solution that makes use of Matlab software to solve three free systems, paint and analyze the difference and regulation.Key words:three-freedom degree system Matlabnumber-solution theory solution12 引言一个具有n个自由度的系统,它在任一瞬时的运动形态需要用n个相互耦合的二阶常微分方程组成的方程组。
多体动力学运动方程一、引言多体动力学是研究多体系统运动规律和动态行为的学科。
多体系统是由多个刚体或柔体通过约束联系在一起的复杂系统,广泛应用于机械工程、航空航天、车辆工程等领域。
多体动力学运动方程是多体动力学的基础,是描述多体系统运动规律的关键方程。
二、牛顿第二定律牛顿第二定律是描述物体运动规律的基本定律,表述为:物体加速度的大小与作用力的大小成正比,与物体的质量成反比。
数学表达式为:F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
三、角动量守恒定律角动量守恒定律表述为:在没有外力矩作用的情况下,一个转动系统的角动量保持不变。
数学表达式为:L=Iω,其中L表示角动量,I表示转动惯量,ω表示角速度。
四、动量守恒定律动量守恒定律表述为:一个孤立系统的总动量保持不变。
数学表达式为:Δp=0,其中Δp表示系统动量的变化量。
五、弹性力学方程弹性力学方程是描述弹性体内应力、应变和位移之间关系的方程。
对于小变形问题,弹性力学方程可简化为胡克定律:σ=Eε,其中σ表示应力,E表示弹性模量,ε表示应变。
六、接触与碰撞模型接触与碰撞模型是多体动力学中的一个重要问题,涉及到接触力、碰撞响应和能量损失等方面的计算。
常用的接触与碰撞模型有Hertz 接触模型、Persson接触模型等。
七、约束与约束力约束是描述多体系统中各物体之间相对运动的限制条件。
约束力是多体系统中的内力,用于保持各物体之间的相对位置关系。
常见的约束类型有方位约束、速度约束和加速度约束等。
八、相对运动与绝对运动相对运动是指两个物体之间的相对位置和相对速度。
绝对运动是指整个多体系统相对于某个参考系的位置和速度。
相对运动和绝对运动的关系是多体动力学中的一个重要问题。
九、运动学与动力学关系运动学主要研究多体系统的位置、速度和加速度等运动参数,而动力学则研究多体系统的受力、力矩和能量等动态参数。
运动学与动力学之间的关系是多体动力学中需要考虑的重要因素。
理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。
以下是对理论力学一些重要知识点的总结。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的表示方法包括矢量表示和解析表示。
2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。
常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。
3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。
4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。
力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。
5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。
对于平面汇交力系和平面力偶系,平衡方程分别有所简化。
6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。
二、运动学运动学研究物体的运动而不考虑引起运动的力。
1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。
在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。
2、刚体的基本运动刚体的基本运动包括平动和定轴转动。
平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。
3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。
通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。
4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。
平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。
三、动力学动力学研究物体的运动与作用力之间的关系。