第三章_单自由度机械系统动力学
- 格式:ppt
- 大小:1.33 MB
- 文档页数:6
课程内容简介课程中文名称:机械系统动力学课程英文名称:Dynamics of mechanical system开课单位:机电工程学院任课教师及职称(3名以上):开课学期:学分:总学时:适用专业:机械制造及其自动化课程内容简介(400字以内):本课程介绍机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述刚性机械系统的动力学分析与设计;机构惯性力平衡的原理与方法;含弹性构件的机械系统的动力学;含柔性转子机械的平衡原理与方法;含间隙副机械的动力学;含变质量机械系统动力学以及机械动力学数值仿真数学基础以及相关软件的仿真实例讲解。
通过本课程的学习,使学生能从系统的角度和动力学的观点了解机械产品动态设计的基础知识,掌握当前机械动力学分析的基本方法,学会运用机械多刚体动力学进行复杂机构的动力学分析与综合运用机械弹性动力学和多柔体系统动力学方法对各类典型机构进行弹性动力分析及综合,具备分析和解决工程实际问题的能力。
教材及主要参考书目:1.杨义勇.机械系统动力学.北京: 清华大学出版社,2009.2.陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.3.徐业宜.高等学校试用教材.北京:机械工业出版社,1991.4.蒋伟.机械动力学分析.北京:中国传媒大学出版社,2005.5.邵忍平. 机械系统动力学.北京:机械工业出版社,20056.唐锡宽,金德闻.机械动力学.北京:高等教育出版社,1983.课程教学大纲课程中文名称:机械系统动力学课程英文名称:Dynamics of mechanical system学分和学时分配:教学目的:本课程着重培养学生对复杂机械系统动力学建模及分析的能力。
通过本课程学习,要求学生掌握当前机械动力学分析的基本方法,学会运用机械多刚体动力学进行复杂机构的动力学分析与综合运用机械弹性动力学和多柔体系统动力学方法对各类典型机构进行弹性动力分析及综合,具备分析和解决工程实际问题的能力。
第三章单自由度机械系统动力学3.1 概述在绪论中我们曾指出:机械动力学研究机械在运动时所受的力,以及机械在力作用下的运动。
在第一类问题中,假定输入构件按给定的某种规律运动,计算在此运动情况下需施加于驱动构件上的平衡力矩及运动副中的反力,称为逆动力学。
本书第一章和第二章都属于逆动力学问题。
在第二类问题中,抛掉输入构件按某种给定规律运动的假定,求解在施加于机械的真实外力的作用下,机械系统的运动随时间而变化的规律,称为正动力学。
本章即讨论正动力学问题。
图3.1.1A一停车阶段B一启动阶段;C稳定运转阶段;机械运转的三个阶段,如图3.1.1所示,机械系统从启动到停车的全过程中包含三个阶段:启动阶段(A)稳定运转阶段(B)和停车阶段(C)。
在机械的稳定运转阶段,由于外力的周期性变化,机械的速度会产生周期性的波动。
速度波动会在运动副中产生附加动压力,引起系统的振动,降低机械工作的精度和可靠性。
研究机械的真实运动和调节速度波动的方法就需要进行动力学分析。
在机械的启动阶段和停车阶段,即所谓过渡历程中,会产生较大的动载荷。
在进行机械零部件的强度计算时,常需要知道这一动载荷。
对启动频繁的机械,启动和制动所需要的时间也常常是人们感兴趣的问题。
这也都需要进行动力学分析。
本章首先研究应用最为广泛的单自由度机械系统的动力学分析。
在研究单自由度机械系统时历来都采用一种等效力学模型来代替原有的机械系统。
本章仍介绍这种传统的方法。
这种传统方法只局限在单自由度系统中应用,而不适用于多自由度系统。
由于各种自动机和机器人的出现,多自由度系统应用越来越广泛。
基于多自由度系统分析的需要,提出了多种动力学建模方法,并开发了相应的计算机软件。
单自由度系统是多自由度系统的一个特例,当然也可以用这类通用的方法和软件来进行分析。
在下一章中研究多自由度机械系统的 1动力学分析时,我们再对这些建模方法做一综合介绍。
单自由度机械系统动力学分析大体包括以下几个步骤:1)将实际的机械系统简化为等效动力学模型;2)根据等效动力学模型列出系统的运动微分方程;3)应用解析方法或数值方法求解系统运动微分方程,求出等效构件的运动规律。
§3 单自由度机械系统的动力学分析1e 21111111d d 21F qq J q J =+ 一、基于拉格朗日方程的动力学方程☐若 q 1 为位移,则 J 11 称为等效质量 ( m e ),F e1称为等效力 ( F e ) ;☐若 q 1 为角位移,则 J 11 称为等效转动惯量 ( J e ),F e1称为等效力矩 ( M e ) 。
∑∑==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=n j j S S j n j jS S S jq J q v m q J q y q x m J j j j j j 12121121212111d d d d d d ωϕ∑∑∑∑====±+=±+⎪⎪⎭⎫ ⎝⎛+=l j m k k kj j j lj m k kk j jy j jx q M q v F q M q y F q x F F 1111111111e cos ωθω单自由度机械系统的动力学分析“±” 取决于 M k 与的方向是否相同,相同为“+”, 相反则为“-” 。
k ω1. 等效动力学模型二、基于等效动力学模型的动力学方程单自由度机械系统的动力学分析☐单自由度机械系统仅有一个广义坐标,无论其组成如何复杂,均可将其简化为一个等效构件。
等效构件的角位移(位移)即为系统的广义坐标。
☐等效构件的等效质量(等效转动惯量)所具有的动能,应等于机械系统的总动能;等效构件上的等效力(等效力矩)所产生的功率,应等于机械系统的所有外力与外力矩所产生的总功率。
单自由度机械系统的动力学分析定轴转动构件 直线移动构件求出位移 S 或角位移的变化规律,即可获得系统中各构件的真实运动。
等效转动惯量等效质量等效力等效力矩☐等效量不仅与各运动构件的质量、转动惯量及作用于系统的外力、外力矩有关,而且与各运动构件与等效构件的速比有关,但与机械系统的真实运动无关;☐等效力(等效力矩)只是一个假想的力(力矩),并非作用于系统的所有外力的合力(外力矩的合力矩);等效质量(等效转动惯量)也只是一个假想的质量(或转动惯量),它并不是系统中各构件的质量(或转动惯量)的总和。
机械系统的动力学分析1.简介机械系统的动力学分析是指通过对机械系统的运动和力学行为进行研究和分析,从而揭示其内在的运动规律和力学特性的过程。
在机械工程领域中,动力学分析是设计、优化和控制机械系统的重要基础研究。
2.机械系统的基本概念机械系统是由多个相互作用的物体(或刚体)组成的系统,其内部存在着相对运动的关系。
例如,一个简单的机械系统可以包含一个刚性杆件和一个旋转关节。
机械系统的动力学分析主要关注以下几个方面:•自由度:机械系统具有多个自由度,即能够在多个坐标方向上独立运动的能力。
自由度的数量决定了机械系统的运动自由度和力学特性。
•运动:机械系统的运动可以通过描述物体的位移、速度和加速度来表达。
在动力学分析中,我们关注的是机械系统的运动规律和运动参数的变化。
•力:在机械系统中,存在着各种各样的力,如重力、摩擦力、弹簧力等。
力的大小和方向会影响机械系统的运动行为和力学特性。
•动力学方程:通过运用牛顿定律和欧拉-拉格朗日方程等力学定律,可以建立机械系统的动力学方程,用于描述运动和力学特性之间的关系。
3.动力学分析的方法在机械系统的动力学分析中,一般采用以下几种方法:3.1.牛顿定律牛顿定律是描述刚体运动的基本定律,它建立了力与加速度之间的关系。
在机械系统的动力学分析中,可以利用牛顿定律来推导物体的运动方程,从而得到物体的位移、速度和加速度等运动参数。
3.2.欧拉-拉格朗日方程欧拉-拉格朗日方程是描述刚体和弹性体运动的重要工具,它基于能量的变化来建立运动方程。
在机械系统的动力学分析中,可以利用欧拉-拉格朗日方程来推导机械系统的运动方程,并求解系统的运动参数。
3.3.运动学分析运动学分析是机械系统动力学分析的基础,它研究机械系统的运动规律和运动参数。
通过对机械系统的位移、速度和加速度等进行测量和分析,可以获得系统的运动特性,并为后续的动力学分析提供基础数据。
3.4.力学模型在动力学分析中,需要建立机械系统的力学模型,即建立力和运动之间的关系。