两自由度机械手动力学问题
- 格式:doc
- 大小:795.00 KB
- 文档页数:8
两自由度机械手动力学问题1题目图示为两杆机械手,由上臂AB、下臂BC和手部C组成。
在A处和B处安装有伺服电动机,分别产生控制力矩M1和M2。
M1带动整个机械手运动,M2带动下臂相对上臂转动。
假设此两杆机械手只能在铅垂平面运动,两臂长为l1和l2,自重忽略不计,B处的伺服电动机及减速装置的质量为m1,手部C握持重物质量为m2,试建立此两自由度机械手的动力学方程。
图1图22数值法求解2.1拉格朗日方程此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。
考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为2211,θθ==q q系统的动能为二质点m 1、m 2的动能之和,即由图2所示的速度矢量关系图可知以A 处为零势能位置,则系统的势能为由拉格朗日函数,动势为:广义力2211,M Q M Q ==求出拉格朗日方程中的偏导数,即代入拉格朗日方程式,整理得:2.2 给定条件 (1)角位移运动规律()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ21θθ和都是从0到90°,角位移曲线为三次函数曲线。
(2)质量m 1=4㎏ m 2=5kg (3)杆长l 1=0.5m l 2=0.4m2.3 MATLAB 程序t=0:0.1:3;theta1=-0.1163*t.^3+0.52335*t.^2; w1=-0.3489*t.^2+1.0467*t; a1=-0.6978*t+1.0467;theta2=-0.1163*t.^3+0.52335*t.^2; w2=-0.3489*t.^2+1.0467*t; a2=-0.6978*t+1.0467;m1=4; m2=5;l1=0.5; l2=0.4; g=9.8;D11=(m1+m2)*l1.^2+m2*l2.^2+2*m2*l1*l2*cos(theta2); D22=m2*l2.^2;D12=m2*l2.^2+m2*l1*l2*cos(theta2); D21=m2*l2.^2+m2*l1*l2*cos(theta2); D111=0;D122=-m2*l1*l2*sin(theta2); D222=0;D211=m2*l1*l2*sin(theta2); D112=-m2*l1*l2*sin(theta2); D121=-m2*l1*l2*sin(theta2); D212=0; D221=0;D1=(m1+m2)*g*l1*sin(theta1)+m2*g*l2*sin(theta1+theta2); D2=m2*g*l2*sin(theta1+theta2);M1=D11.*a1+D12.*a2+D111.*w1.^2+D122.*w2.^2+D112.*w1.*w2+D121.*w2.*w1+D1; M2=D21.*a2+D22.*a2+D211.*w1.^2+D222.*w2.^2+D212.*w1.*w2+D221.*w2.*w1+D2; T1=polyfit(t,M1,3) T2=polyfit(t,M2,3)subplot(2,1,1),plot(t,M1),grid on,xlabel('时间(s )'),ylabel('控制力矩(N ·m )'),title('motion1') subplot(2,1,2),plot(t,M2),grid on,xlabel('时间(s )'),ylabel('控制力矩(N ·m )'),title('motion2')2.4 数值计算结果()6167.1*7993.31*7329.3*5685.3t 231+++-=t t t M ()5449.1*9801.25*9481.8*0679.0t 232-+--=t t t M图3 M 1变化规律图图4 M2变化规律图3 ADAMS仿真3.1模型建立图5 模型图3.2 施加运动在两个关节处分别施加位移函数图6 关节运动施加图位移函数为:step(time,0,0,3,pi/2)运动规律如下图所示:图7 关节处运动规律图3.3 运动仿真设置仿真时间为3s,步数为300步,仿真结果如下图所示:图8 关节1处控制力矩仿真结果图图9 关节2处控制力矩仿真结果图4 结果对比图10 控制力矩M1结果对比图图11控制力矩M2结果对比图从函数规律上看,两种求解方法得出的结果几乎一样;从数值上看:t 0 0.5 1.0 1.5 2 2.5 3.0 数值计算M1 7.1699 14.3348 33.4367 49.4650 51.6557 44.8470 40.0971 仿真求解M1 7.4526 14.5646 33.5798 49.5093 51.5775 44.6398 39.8039表2 控制力矩M2数值结果对比由上两表可以看出:数值计算结果与仿真求解结果相差很小,误差围为0.437%-0.731%,出现这种结果的原因可能是因为两种方法计算的精度不同,或者是算法存在差异。
机械系统动力学作业---平面二自由度机械臂运动学分析-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII平面二自由度机械臂动力学分析[摘要] 机器臂是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。
本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。
经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。
[关键字] 平面二自由度机械臂动力学拉格朗日方程一、介绍机器人是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。
机器人动力学问题有两类:(1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。
这对实现机器人动态控制是相当有用的。
(2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。
也就是说,给出关节力矩向量τ,求机器人所产生的运动。
这对模拟机器人的运动是非常有用的。
二、二自由度机器臂动力学方程的推导过程机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。
机器人动力学方程的具体推导过程如下:(1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。
(2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时,F r为力矩。
(3) 求出机器人各构件的动能和势能,构造拉格朗日函数。
(4) 代入拉格朗日方程求得机器人系统的动力学方程。
下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。
1、分别求出两杆的动能和势能设θ1、θ2 是广义坐标,Q1、Q2是广义力。
两个杆的动能和势能分别为:式中,是杆1质心C1(,)的速度向量,是杆2质心C1(,)的速度向量。
二自由度机械臂的动力学模型通常涉及到两个主要的方面:几何构型和运动方程。
在建立动力学模型之前,首先需要确定机械臂的几何参数,包括每个关节的转动惯量以及各连杆的长度。
动力学模型可以分为两部分:静力学模型和动力学模型。
静力学模型关注的是力的平衡问题,即在机械臂的任意位置上,作用在机械臂上的所有外力之和等于零,所有外力矩之和也等于零。
动力学模型则进一步考虑了机械臂的运动情况,即在给定的力和力矩作用下,机械臂的运动如何变化。
为了建立动力学模型,我们通常采用牛顿-欧拉方法或者拉格朗日方法。
牛顿-欧拉方法从关节坐标出发,逐步推导出各关节的力和力矩,再结合连杆的长度,得到整个机械臂的动力学方程。
拉格朗日方法则是从能量的角度出发,利用动能和势能的关系来建立动力学方程。
具体来说,对于二自由度机械臂,其动力学方程可以表示为:
M(q)q'' + C(q, q', t)q' + G(q, t) = T(q, q', t)
其中:
- M(q) 是机械臂的质量矩阵,q是关节变量;
- q' 是关节变量的速度;
- q'' 是关节变量的加速度;
- C(q, q', t) 是由关节速度引起的科氏力和离心力等构成的矩阵;
- G(q, t) 是重力矩阵;
- T(q, q', t) 是外部施加的力和力矩。
在实际应用中,还需要对上述方程进行求解,这通常需要借助计算机模拟或数值积分方法。
通过求解动力学方程,可以预测机械臂在特定输入下的动态响应,这对于机械臂的控制系统的设计至关重要。
二自由度机械臂实验报告实验报告课程名称: 机电系统建模与控制实验项目名称: 二自由度机械臂实验****: **组别:第6组成员:刘仕杰.胡据林.王昊阳.于骁实验日期:2019年12月9日一、实验简介二自由度(DOF)串联柔性(2DSFJ)机械臂包括两个用于驱动谐波齿轮箱(零回转间隙)的直流电机及一个双杆串联机构()。
两个连接都是刚性的。
主连接通过一个柔性关节耦合到第一个驱动器上,在其端部载有第二个谐波驱动器,该驱动器通过另一个柔性关节与第二个刚性连接耦合。
两个电机及两个柔性关节都装有正交光学编码器。
每一个柔性关节配有两个可更换的弹簧。
使用一个翼形螺钉零件,就可沿着支撑杆,将每根弹簧端移到所希望的不同定位点。
该系统可视为多种手臂式机器人机构的高度近似,是典型的多输入多输入(MIMO)系统。
二、实验内容1. 系统开环时域动态特性和频域特性分析;2. 应用极点配置方法设计控制器,进行时域动态响应特性和频域特性分析(超调量、上升时间、震荡次数等,根据极点分布决定),改变极点分布位置,完成至少 2 组不同闭环参数性能对比;3. 应用 LQR 方法设计反馈控制律,进行时域动态响应特性和频域特性分析(超调量、上升时间、震荡次数等,根据极点分布决定),改变 Q 和 R 的值,完成至少 2 组不同闭环参数性能对比;4. 设计全阶状态观测器,完成物理 PSF 与状态观测(至少两组观测器极点位置)综合作用下的系统性能控制。
三、实验设备1.设备构造与线路图(1)直流电机#1第一台直流电机为一台可在最高27V 下工作的Maxon273759 精密刷电机(90 瓦)。
该电机可提供 3A 的峰值电流,最大连续电流为 1.2A。
注意:施用在电机上的高频信号会对电机刷造成最终损坏。
产生高频噪音的最可能来源是微分反馈。
如果微分增益过高,噪音电压会被输入到电机里。
为保护您的电机,请将您的信号频带限制控制在 50Hz以内。
(2)谐波传动器#1谐波驱动器#1 使用谐波传动器LLC 生产的CS-14-100-1U-CC-SP 谐波减速箱。
两自由度机械手动力学问题
1题目
图示为两杆机械手,由上臂AB、下臂BC和手部C组成。
在A处和B处安装
有伺服电动机,分别产生控制力矩M
1和M
2。
M
1
带动整个机械手运动,M
2
带动下臂
相对上臂转动。
假设此两杆机械手只能在铅垂平面内运动,两臂长为l
1和l
2
,
自重忽略不计,B处的伺服电动机及减速装置的质量为m
1
,手部C握持重物质量
为m
2
,试建立此两自由度机械手的动力学方程。
图1
图2
2数值法求解
拉格朗日方程
此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。
考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为
2211,θθ==q q
系统的动能为二质点m 1、m 2的动能之和,即
由图2所示的速度矢量关系图可知
以A 处为零势能位置,则系统的势能为
由拉格朗日函数,动势为:
广义力2211,M Q M Q ==
求出拉格朗日方程中的偏导数,即
代入拉格朗日方程式,整理得:
给定条件
(1)角位移运动规律
()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ
21θθ和都是从0到90°,角位移曲线为三次函数曲线。
(2)质量
m 1=4㎏ m 2=5kg (3)杆长 l 1= l 2=
MATLAB 程序
t=0::3;
theta1=*t.^3+*t.^2; w1=*t.^2+*t; a1=*t+;
theta2=*t.^3+*t.^2; w2=*t.^2+*t; a2=*t+; m1=4; m2=5; l1=; l2=;
g=;
D11=(m1+m2)*l1.^2+m2*l2.^2+2*m2*l1*l2*cos(theta2); D22=m2*l2.^2;
D12=m2*l2.^2+m2*l1*l2*cos(theta2); D21=m2*l2.^2+m2*l1*l2*cos(theta2); D111=0;
D122=-m2*l1*l2*sin(theta2); D222=0;
D211=m2*l1*l2*sin(theta2); D112=-m2*l1*l2*sin(theta2); D121=-m2*l1*l2*sin(theta2); D212=0; D221=0;
D1=(m1+m2)*g*l1*sin(theta1)+m2*g*l2*sin(theta1+theta2); D2=m2*g*l2*sin(theta1+theta2);
M1=D11.*a1+D12.*a2+D111.*w1.^2+D122.*w2.^2+D112.*w1.*w2+D121.*w2.*w1+D1; M2=D21.*a2+D22.*a2+D211.*w1.^2+D222.*w2.^2+D212.*w1.*w2+D221.*w2.*w1+D2; T1=polyfit(t,M1,3) T2=polyfit(t,M2,3)
subplot(2,1,1),plot(t,M1),grid on,xlabel('时间(s )'),ylabel('控制力矩(N·m)'),title('motion1')
subplot(2,1,2),plot(t,M2),grid on,xlabel('时间(s )'),ylabel('控制力矩(N·m)'),title('motion2')
数值计算结果
()6167.1*7993.31*7329.3*5685.3t 231+++-=t t t M ()5449.1*9801.25*9481.8*0679.0t 232-+--=t t t M
图3 M1变化规律图
图4 M2变化规律图
3 ADAMS仿真
模型建立
图5 模型图
施加运动
在两个关节处分别施加位移函数
图6 关节运动施加图位移函数为:step(time,0,0,3,pi/2)
运动规律如下图所示:
图7 关节处运动规律图
运动仿真
设置仿真时间为3s,步数为300步,仿真结果如下图所示:
图8 关节1处控制力矩仿真结果图
图9 关节2处控制力矩仿真结果图
4 结果对比
图10 控制力矩M1结果对比图
图11 控制力矩M2结果对比图
从函数规律上看,两种求解方法得出的结果几乎一样;
从数值上看:
表1 控制力矩M1数值结果对比
t02
数值计算M1
仿真求解M1
表2 控制力矩M2数值结果对比
t02
数值计算M2
仿真求解M2
由上两表可以看出:数值计算结果与仿真求解结果相差很小,误差范围为%%,出现这种结果的原因可能是因为两种方法计算的精度不同,或者是算法存在差异。
如果对结果精度要求不是很高,可以认为两种方法求得的结果相等,进一步说明了仿真计算的可靠性。