因式分解习题课
- 格式:ppt
- 大小:116.50 KB
- 文档页数:7
1.3 积的乘方一、选择题1.计算33)2(mn -的结果是( ).A.932n m -B.938n mC.938n m -D.638n m - 2.下列各式错误的是( ).A. 12342)2(=B.844281)3(y x xy =C.93327)3(a a -=-D.442222)2(b a b a =3.计算200720082)5.0(⨯-的结果是( ). A. 21- B.12 C.2 D.2-4.下列结论中正确的是( ).A.mn n m a a a 22=⋅B.n m n m a a a +=+22C.m n m n m n b a ab 222)(⋅=D.n m n m a a +=22)(二、填空题5.计算42)31(b a -的结果为_________________.6.计算322)()(y x xy -⋅-的结果为___________________________.7.计算 532234)(2)(x xy y x ⋅--的结果为___________________.8.若63327n m x -=,则=x _________________________.9.已知7,42==n n b a 则_______)(2=n ab .三、解答题10. 计算:342532)()3( )1(x x x x ⋅+⋅- 24333)()()(8)2( )2(y y x xy ⋅-⋅-+-263434)()32( )3(y x y x -- 23322233])([5)4()( )4(xy y x y x --+---11. 计算:1)311()43( )1(+-⨯-m m 1221)321(8 )2(⨯12.已知n 为正整数,且,9)(2=n x 求n n x x 2222)(3)31(-的值.13.当0)89(9322=--+-+b a b a , 化简2232332)51()3()3()()()3(3b a ab b b a a ⋅-+-+-⋅-⋅⋅-,并求代数式的值.14. 若,16,34=-=+y x y x 求)271(311y x x xn n n -+- 的值.§15.1.4 整式的乘法一、选择题1.下列计算正确的是( ).A.y x xy x 32936=⋅B.322)3)(2(b a ab ab -=-C.3322)()(n m n m mn -=-⋅D.2329)3(3y x xy y x =-⋅-2.下列计算正确的是( ).A.222322862)43(b a b a ab ab b a -=-B.23224)12)(2(x x x x x --=++-C.234224812)123(4x x x x x x --=--D.12214321)432(++-=-m m ab b a ab b a3.下列计算正确的是( ).A.56)8)(7(2-+=-+x x x xB.4)2(22+=+x xC.3256)8)(27(x x x -=+-D.22169)43)(43(y x y x y x -=-+4.若,6))(2(2-+=+-bx x a x x 那么( ).A.5,3-==b aB.1,3==b aC.1,3-=-=b aD.5,3-=-=b a5.计算)5()52(22n m n n m m m ----)的结果是( ).A.2n -B.2nC.210n mn +-D.210n mn +二、填空题6.计算=⋅22332)2(21yz x y x __________________. 7.计算)3()2(2322y x y x xy -⋅-的结果是 .8.计算:(1)=-+)52)(32(x x ________;(2)=-+-)1)((n m n m .9.计算:=+--)462)(21(232y y x xy y x ___________________________. 10.已知一个长方体的长为y x 3+,宽为y x +,高为x 2,则长方体的表面积为______________________.三、解答题11.计算:2364332)4()21()32( )1(y x xy y x -⋅-⋅-)3)(32( )2(y x y x -+(3)221(2)2()3xy xy x y x xy y ⎛⎫⎡⎤---- ⎪⎣⎦⎝⎭(4)()()432342322+-+-a a a a a .12.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x .§15.2乘法公式§15.2.1 平方差公式一、选择题1.以下各式中, 不能用平方差公式计算的是( ).A.)32)(23(a b b a -+B.)34)(34(22bc b bc a +-C.)23)(32(b a b a +-D.)35)(53(m m -+2.下列各计算中正确的是( ).A 222)2)(2(b a b a b a -=-+ B.14)21)(12(2-=--x x xC.22))((a b b a b a -=+-+D.22))((b a b a b a --=--+3.若( ) 24225)5(x y y x -=+,则括号内应填的代数式是( ).A.25y x --B.25y x +C.25y x -D.25y x +-4.2006200420052⨯-的计算结果是( ).A.1-B.1C.2-D.2二、选择题5.计算)2)(2(--+-ab ab 的结果为____________________________.6.计算)45)(45(a a +-+的结果为_______________________________.7.计算=---)23)(23(22xy ab xy ab .8.若,344=-y x 则代数式222222)()(y x y x +-的值为_____________________.9.计算)3)(9)(3(2++-x x x 的结果是_______________________________.三、解答题10. 利用平方公式计算)3)(3( )1(ab c c ab +-+)32)(32()23)(23( )2(y x y x y x y x -+-+-)43)(34()52)(25)(3(23322332x y y x x y y x --+--+-)1)(1)(1()4(422234y x xy xy y x +-+-()()()()121212542+++·…·()1264+11. 利用平方差公式计算:5.195.20 )1(⨯ 200720092008 )2(2⨯-12. (1) 计算)12)(12)(12(42+++…)12(64+ .(2) 如图1,可以求出阴影部分的面积是 (写成两数平方的差的形式); 如图2,若将图1的阴影部分裁剪下来,重新拼成一个矩形,它的宽是 , 长是 ,面积是 (写成多项式乘法的形式);(3) 比较图1、图2的阴影部分面积,可以得到乘法公式 _____ (用式子表达).§15.2.2 完全平方公式§15.2.2 完全平方公式一、选择题1.下列各式:)2)(2( )1(x y y x -- )2)(2( )2(y x y x --+)2)(2( )3(x y y x +--- )2)(2( )4(x y y x --+-其中能用完全平方公式计算的有( ).A.1个B.2个C.3个D.4个2.下列计算正确的是( ).A.222469)23(y xy x y x +-=-B. 22211()24x y x y -=+C.22244)2(y xy x y x +-=--D. 222244()393x y x xy y -+=-+3.化简代数式22)()(y x y x -+ 的值为( ).A.44x y -B.42242x x y y -+C.222x xy y -+D.44x y +4.计算22(23)(23)x y x y --+的结果为( ).A.6xyB.12xy -C.24xy -D.24xy二、填空题5.计算2(3)x y -+=____________________________.6.计算22( 1.4)3x y -=_______________________________.7.计算297=_______________.8.5,10x y xy +==-,则22x y += _______.9.解方程2(35)(35)(31)10x x x +---=的解为___________________.三、解答题10.利用完全平方公式计算: 22(1)(43)x y -+ ; (2)(23)(23)x x +-- ;2(3)(31)x y --; (4)(21)(21)x y x y ++--;)892]()312()312[( )5(2222a b b a b a -++-.11.已知,40,422=+=-b a b a 求ab 的值.12.已知40)(,20)(22=-=+b a b a .求:22)1(b a +的值;ab )2(的值.13.解不等式:22)13()52(++-y y >)10(132-y .14.已知△ABC 的三边a 、b 、c 满足,0222=---++ac bc ab c b a 试判断 △ABC 的形状.§15.3 整式的除法§15.3.1 同底数幂的除法一、选择题1.下列计算正确的是( ).A.326x x x =÷B.257x x x =÷C.55x x x =÷D.0)()(44=-÷-x x2.下列计算正确的是( ).A.212a a a n n =÷++B.22336)(b a b a ab =÷C.3238)(x x x =÷D.33258)2()2(y x xy xy -=-÷-3.如果b b b n x =÷+2,那么x 的值为( ).A.1+nB.2+nC.3+nD.n -34.计算232234)(ab b a b a ÷⋅的结果是( ).A.77b aB.67b aC.49b aD.79b a二、填空题5.计算235x x x ⋅÷ =_________________________.6.计算01(0.2)6-的值为__________________________.7.若0)13(-x 有意义,则x 的取值范围_____________.8.计算=÷÷2582739_______________________.9.若0223=--y x ,则y x 2344÷的值为 ____________________.三、解答题10.计算下列各题: 264332)()()( )1(x x x ÷-⋅- ;m m m x x x ÷÷)( )2(25 ;)()()( )3(1117y x x y y x -÷-÷- ;])[()()( )4(332233y y y y ÷÷-⋅.11. 若,52,32==n m 求:n m -2)1(的值; n m 232)2(-的值.12.拓广探索:已知,65613,21873,7293,2433,813,273,93,3387654321========…,请你根据上面规律推测883的个位数字是多少?§15.3.2 整式的除法一、选择题1.计算33343)21()(ab b a -÷的结果是( ). A.3681b a B.3681b a -C.368b a -D.368b a2.计算n n x y y x 424)2(31)2(-÷-+的结果是( ). A.41(2)3nx y - B.1)2(3+--n y xC.2)2(3y x --D.2)2(3y x -3.已知423416287m n a b a b b ÷=,那么n m ,的取值为( ).A.4,5==n mB.3,4==n mC.3,5==n mD.4,4==n m4.下列运算结果错误的是( ).A.23)23(-=÷-x y y xyB.y x xy xy y x +=÷+24)48(22C.b ab ab c ab c b a 233)69(222+=÷+D.xy y y x y x y x +-=-÷-2223323)4()412(二、填空题5.计算)102()108(57⨯-÷⨯-的结果是_________________.6.计算=-÷)7(213649y x y x _________________________.7.计算)6()423(23x x x x -÷-+- 的结果是_______________.8.已知多项式13323+++x ax x 能被12+x 整除,且商式是13+x ,那么a 的值是 ____________.9.光的速度约为s /km 1035⨯,太阳系以外距离地球最近的一颗恒星发出的光,需要4年时间才能到达地球,一年以7103⨯秒计算,则这颗恒星与地球的距离为____ _. 10.计算=÷+-+++12342323)639(m m m m a a a a _________ ____________.三、计算题11.计算 )3()912( )1(235x x x -÷- )5.0()61313.0)(2(234232b a b a b a b a -÷--472632211(3)()()393a b a b ab -÷234233324112(4)323a b c a b c a b ⎛⎫⎛⎫÷-÷ ⎪ ⎪⎝⎭⎝⎭x x y x y y x 34)6()3()5(2÷-+---][22322644)2(])()3()4(16)[6(a a a a a a -÷÷---12.先化简,再求值.[]a b a b a b a b a 4)25)(2()23)(23(÷-+-+-,其中203,10-==b a .§15.4 因式分解§15.4.1 提公因式法一、选择题1.下列各式中从左到右的变形是因式分解的是( ).A.9)3)(3(2-=-+a a aB.1)3)(2(52++-=-+x x x xC.)(22b a ab ab b a +=+D.)1(12x x x x +=+2.代数式3322328714b a b a b a -+各项的公因式是( ).A.327b aB.227b aC.b a 27D.27ab3.把多项式)2()2(2a m a m ---分解因式等于( ).A.))(2(2m m a +-B.))(2(2m m a --C.)1)(2(--m a mD.)1)(2(+-m a m4.把下列各式进行因式分解,正确的是( ).A.)7(722x x y y xy y x +=++B.)2(363322+-=+-a a b b ab b aC.)34(2682x xyz y x xyz -=-D.)32(26422c b a a ac ab a -+-=-+- 二、填空题5.因式分解:=--xz z xy yz x 36923____________________.6.分解因式:=-+-)1()1(y y y x ______________________.7.因式分解:=-----))(())((m y m x y y m x m m __________________.8.因式分解:=--+12m m a a __________________________.9.如果,2,3-=-=+xy y x 那么3223y x y x +的值为_______________________.三、解答题10.把下列多项式在有理数范围内因式分解:)1( 2348x x - m m m 26164)2(23-+-(3) 224262424xy y x y x -+-(4) ))((3))((2z y x z y z y x y x -+-+-++(5) )(6)(4)(8a x c x a b a x a ---+-(6) 3222)(15)(20x y xy y x y x ---11.利用因式分解计算 8208208 )1(2⨯- 4.297.145.07.145.3 )2(-⨯+⨯12.证明:139792781--能被45整除.§15.4.2 公式法(1)一、选择题1.下列多项式中不能用平方差分解的是( ).A.22b a +- B.22y x -- C.22249z y x - D.2242516p n m - 2.分解因式的结果是)3)(3(y x y x +--的是( ).A.229y x -B.229y x +C.229y x --D.229y x +-3.多项式()()2223b a b a --+分解因式的结果是( ) A.()()b a b a ++24B. ()()b a b a 324++C.()232b a +D. ()22b a + 4.下列各式中,计算正确的是( )A.()()x x +-22=22-x B.()()432322-=-+x x x C.()()222c b a c ab c ab -=+- D.()()22y x y x y x -=+-- 5.一个长方形的面积为22y x -,以它的长边为边长的正方形的面积为( )A. 22y x +B. xy y x 222-+C. xy y x 222++ D.以上都不对二、填空题6.(2x -3y )( )=9y 2-4x 2.7.一个正方形的边长增加了2cm ,面积相应增加了322cm ,这个正方形的边长为 .三、解答题8.用简便方法计算(1)6.42-3.62; (2)21042-10429. 把下列多项式因式分解:3(1)a a -; 44483)2(y x -(3))()(22x y n y x m -+- 22)(9)(25)4(y x y x +--10.如图大正方形的边长为a ,小正方形的边长为b ,利用此图证明平方差公式.11.已知n 为正整数,试证明()()2215--+n n 的值一定能被12整除.12.已知:15,1222=+=+y xy xy x ,求:()()()y x y x y x -+-+2的值. a b (第10题)§15.4.2 公式法(2)一、选择题1.要使a x x +-62成为形如()2b x -的完全平方式,则b a ,的值() A.9,9==b a B. 3,9==b aC. 3,3==b a A =3D. 2,3-=-=b a2.若42++mx x 是一个完全平方公式,则m 的值为( )A.2B.2或-2C.4D.4或-4 3.下列各代数式中是完全平方式的是( ).96)1(2+-a a 22964)2(y xy x +- 241)3(a +41)4(2+-x x2236)5(y xy x ++A.)2)(1(B.)4)(1(C.)4)(2(D.)5)(2( 4.多项式4225101x x +-在有理数范围内因式分解的结果为( ).A.)51)(51(22x x +-B.23)51(x -C.22)51(x -D.)51)(51(x x -+二、填空题5.分解因式:3244a a a -+= .6.简便计算:=+⨯⨯+22646436236___________.7.多项式A ab b a ++622是完全平方式,则=A ______________.8.多项式162+-kx x 是完全平方式,则=k ___________________. 9.多项式a ax 42-与多项式244x x -+的公因式是 .三、解答题10.223612)1(y xy x +-()14422--x x4)(12)(9)3(2+---y x y xab b a 4))(4(2+-222224))(5(y x y x -+81)(72)(16)6(24++-+y x y x11.已知:9)(,25)(22=-=+y x y x ,求xy 与22y x +的值.12.已知,12,19=-=y x 求代数式229124y xy x ++的值.。
322281224yxyyx+--()()2216yxyx--+a a-3第二章因式分解复习(编号:复02)知识点回顾1、因式分解的定义;把一个多项式化成几个整式的的形式。
2、因式分解与整式乘法的关系:。
根据箭头指向写出属于什么变形。
3、因式分解的方法;(1)提公因式法,如:ma+mb+mc= 。
(2)公式法,平方差公式:。
完全平方公式:。
一、课堂练习(A 组题)1、下列从左到右是因式分解的是()A. x(a-b)=ax-bxB. x2-1+y2=(x-1)(x+1)+y2C. x2-1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、下列因式分解中,正确的是()A.3m2-6m=m(3m-6) B.a2b+ab+a=a(ab+b)C.-x2+2xy-y2=-(x-y)2D.x2+y2=(x+y)23、下列多项式,不能运用平方差公式分解的是()A、42+-m B、22yx--C、122-yx D、()()22amam+--4.若x2+2(m-3)x+16是完全平方式,则m=( )A.3B.-5C.7.D.7或-15、若9x2+axy+4y2是完全平方式,则a=6、把下列各式因式分解.(1) (2)(3)(4)4p(1-q)3+2(q -1)2二、课堂练习(B组题)3、因式分解(1)(2))(2)(3xyyxa---(3)(4)(5)4.已知x-y=1,xy=2,5、利用因式分解说明:求x3y-2x2y2+xy3的值. 127636-能被140整除。
6.计算:(1)(-2)101+(-2)100 (1)32004+32003课后作业1、下列各式从左到右的变形,是因式分解的是:()A、()224168-=+-xxx B、()()103252-+=-+xxxxC、xxxxx6)3)(3(692+-+=+-D、()()()()2332-+=+-xxxx32232ab b a b a ++22==+ab b a2、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+;B 、mn m 2052-;C 、22y x --,D 、92+-x ;3、若x 2-8x+m 是完全平方式,则m= .4、若9x 2+axy+4y 2是完全平方式,则a= .5、223,1,x y xy x y +=-=+=则 6、因式分解(1) (2) (3)(4) 21222++x x (5)(m+n)2-6(m+n)+9(6)4x 2-(y+z)2 (7)7.8、已知 求 的值.9、10、 11、(4)你能根据所学知识找到上面算式的简便运算吗?请你利用你找到的简便方法计算下式:()y x y x m +--2。