浙江省宁波市九校2017-2018学年高一下学期期末联考数学试题(全WORD版,有答案)
- 格式:pdf
- 大小:41.92 KB
- 文档页数:3
2015-2016学年浙江宁波市九校高一(下)学期期末数学试题一、选择题1.已知a b >,则下列不等式成立的是( ) A .11a b< B .22a b -<- C .22a b > D .ac bc ≥ 【答案】B【解析】试题分析:A 中,当1,2a b =-=-时,11a b<不成立;B 中,22a b a b a b >⇒-<-⇒-<-,故B 正确;C 中,当1,2a b ==-时,22a b >不成立;D 中,当0c <时,ac bc ≥不成立,故选B . 【考点】不等式的性质.2.在等差数列{}n a 中,563,2a a ==-,则348a a a +++等于( )A .1B .2C .3D .4 【答案】C【解析】试题分析:因为384751a a a a a a +=+=+=,所以348563()3a a a a a +++=+=,故选C .【考点】等差数列的性质.3.直线:10l x ky k -+-=与圆22:3C x y +=的位置关系为( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项都有可能 【答案】A【解析】试题分析:由题意,得(1)1k y x -=-,所以直线l 恒过定点(1,1),又点(1,1)在22:3C x y +=内,所以直线l 与圆C 相交,故选A .【考点】直线与圆的位置关系.【方法点睛】直线与圆的位置关系考虑三法:(1)确定直线所过的定点,判断定点在圆内;(2)通过判断圆心到直线的距离与半径的大小关系而实现;(3)通过将直线方程与圆方程联立消元后,利用判别式判断,此法是判断直线与圆锥曲线位置关系的通法. 4.已知ABC ∆的面积222()S a b c =-+,则cos A 等于( )A .-4BC .D . 【答案】D【解析】试题分析:因为1sin 2ABC S bc A ∆=,所以2221sin ()2bc A a b c =-+,即2221sin 2b c a bc A+-=-.由余弦定理,得2221cos sin 24b c a A A bc +-==-,所以2A π<<π,所以cos A =cos 17A =-,故选D . 【考点】1、余弦定理;2、三角形面积公式;3、同角三角形函数间的基本关系.5.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )A.10 B .1920 C .910 D .12【答案】C【解析】试题分析:作出不等式组所表示的平面区域,如图所示,要使α最小,则点P 到加以的距离最大即可,由图象知,当点P 点(4,2)D --时,APB α∠=最小,此时||OD ==,||1OA =,则2APO α∠=,即||s i n2||AO OP α==,所以229cos 12sin1210αα=-=-=,故选C .【考点】1、简单的线性规划问题;2、二倍角公式. 【方法点睛】线性规划的实质是把代数问题几何化,即数形结合的思想,需要注意的是:①是准确无误地作出可行域;②画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;③一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 6.若1sin()43πα+=,(0,)απ∈,则cos2α=( ) A .79-B. CD.【答案】D【解析】试题分析:因为(0,)απ∈,所以(,)444αππ5π+∈,又13sin()sin434ππα+=<,所以(,)44απ3π+∈π,所以cos()43πα+=-,所以sin[2()]sin(2)cos 22sin()cos()4244παααααπππ+=+==++=9-,故选D . 【考点】1、同角三角函数间的基本关系;2、倍角公式;3、诱导公式.【技巧点睛】对于给角求角问题,常见有:(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”. 7.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 ... 2013 2014 2015 2016 3 5 7 9 ... 4027 4029 4031 8 12 16 ... 8056 8060 20 28 (16116)该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( ) A .201520172⨯ B .201420172⨯ C .201520162⨯ D .201420162⨯【答案】B【解析】试题分析:观察数列,可以发现规律:每一行都是一个等差数列,且第一行的公差为1第二行的公差为2,第三行的公差为4,第四行的公差为8,…,第2015行的公差为20142,第2016行(最后一行)仅有一个数为20142014(12016)220172+⨯=⨯,故选B .【考点】1、归纳与推理;2、等差数列的通项公式.8.已知关于x 的二次方程20ax bx c ++=(0,,)a b c R >∈在区间(0,2)内有两个实根,若1251044c a b c ≥⎧⎨++≥⎩,则实数a 的最小值为( )A .1B .32C .94D .1625【答案】D【解析】试题分析:设()()()(,(0,2))f x a x p x q p q =--∈,因为1251044c a b c ≥⎧⎨++≥⎩,所以(0)1f ≥,(2.5)1f ≥,所以1apq ≥,(2.5)(2.5)1a p q --≥,所以21(2.5)(2.5)a p p q q ≥--.因为625(2.5)(2.5)256p p q q --≤,当且仅当 1.25p q ==时取等号,所以2256625a ≥,所以1625a ≥,所以实数a 的最小值为1625,故选D . 【考点】 1、方程的根;2、基本不等式.二、填空题9.已知直线:210l x y +-=,则原点O 关于直线l 对称的点是 ;经过点(2,1)P 且纵横截距相等的直线方程是 .【答案】24(,)55;30x y +-=或20x y -=【解析】试题分析:设原点O 关于直线l 对称的点为(,)a b ,则210221()12a b b a ⎧+⋅-=⎪⎪⎨⎪⋅-=-⎪⎩,解得2545a b ⎧=⎪⎪⎨⎪=⎪⎩,所以所求点的坐标为24(,)55;当直线过原点的,方程为12y x =,即20x y -=,当直线不过原点时,设直线的方程为x y k +=,把点(2,1)P 代入,得3k =,所以直线方程为30x y +-=,综上所述所求直线方程为30x y +-=或20x y -=. 【考点】1、直线方程;2、两直线间的位置关系.10.对正整数n 定义一种新运算“”,它满足:①1*11=;②(1)*12(*1)n n +=,则2*1== ;*1n = . 【答案】12,2n -【解析】试题分析:因为1*1=,(1)*12(*1)n n +=,所以2*1(11)*12(1*1)2=+==;*1(11)*1n n =-+=2112(1)*12(21)*12(2)*12(1*1)2n n n n n ---=-+=-===.【考点】新定义. 11.已知1cos 3α=,1cos()3αβ+=-,且,(0,)2παβ∈,则cos β= ;2αβ+= .【答案】7,9π【解析】试题分析:因为,(0,)2παβ∈,所以(0,)αβ+∈π,所以sin 3α=,sin()3αβ+=,所以cos β=cos[()]cos()cos sin()sin αβααβααβα+-=+++=117()33339⨯-+⨯=;cos(2)αβ+=cos[()]cos()cos sin()sin αβααβααβα++=+-+=11()13333⨯--=-,所以2αβ+=π. 【考点】1、同角三角函数间的基本关系;2、两角差的余弦公式.12.设实数,x y 满足24y xy x y x ≥-⎧⎪≥⎨⎪+≤⎩,则4z y x =-的取值范围是 ;4||z y x =-的取值范围是 . 【答案】[6,24],[8,4]--【解析】试题分析:作出不等式组表示的平面区域,由图知,当目标函数4z y x =-经过点(2,2)A 时取得最小值2426-⨯=-,经过点(4,8)B -时取得最大值84(4)24-⨯-=,所以4z y x =-的取值范围是[6,24]-;404||40y x x z y x y x x +<⎧=-=⎨-≥⎩,由图知,当0x <时,4z y x =+,在点(4,8)B -处取得最小值84(4)8+⨯-=-,在原点处取得最大值0,所以当0x <时,[8,0)z ∈-,当0x ≥,4z y x =-在点(2,2)A 处取得最小值2426-⨯=-,在点(0,4)C 处取得最大值4404-⨯=,所以0x ≥,[6,4]z ∈-,所以4||z y x =-的取值范围是[8,4]-.【考点】简单的线性规划问题.13.直线20(,0)mx ny m n -+=>被圆222210x y x y ++-+=截得弦长为2,则41m n+的最小值为 . 【答案】92【解析】试题分析:将圆的方程化为标准方程为22(1)(1)1x y ++-=,所以圆心为(1,1)-,半径为1,所以直线20(,0)mx ny m n -+=>经过圆心(1,1)-,所以20m n --+=,所以2m n +=,所以41m n+=141514519()()()222222n m m n m n m n ++=++≥+⨯=,当且仅当4n m m n=,即42,33m n ==时等号成立,所以41m n +的最小值为92. 【考点】1、直线与圆的位置关系;2、基本不等式.【方法点睛】当函数或代数式具有“和是定值”、“积是定值”的结构特点时,常利用基本不等式求其最大、最小值.在具体题目中,一般很少考查基本不等式的直接应用,而是需要对式子进行变形,寻求其中的内在关系,然后利用基本不等式得出结果. 14.已知数列{}n a 的前n 项和为n S ,当数列{}n a 的通项公式为*1,1n a n N n =∈+时,我们记实数λ为2n n S S -的最小值,那么数列1100n b n λ=-,*n N ∈取到最大值时的项数n 为 . 【答案】34【解析】试题分析:因为11n a n =+,设2()n n f n S S =-,则12211()23n n n f n a a a n n ++=+++=+++++121n +,111112(1)()022*********f n f n n n n n n n +-=+-=+->++++++,所以()f n 单调递增,所以当1n =时,2n n S S -取得最小值1(1)3f =,即13λ=,所以111001003n b n n λ==--,当33n ≤时,0n b <,当34n ≥时,0n b >,所以数列1100n b n λ=-取到最大值时的项数n 为34. 【考点】1、递推数列;2、数列的单调性. 15.已知正实数,a b 满足21122a a b+=++,则a b +的取值范围是 .【答案】1,)2+∞ 【解析】试题分析:因为,a b 为正实数,1121[(2)(2)]1[(2)(2)]()12222a b a a b a a b a a b+=+++-=++++-++=12(2)21122222a b a a a b ++++≥+=++,当且仅当2(2)222a b a a a b ++=++,即a =,12b =时等号成立,所以a b +的取值范围是1,)2+∞.【考点】基本不等式.【技巧点睛】使用基本不等式以及与之相关的不等式求一元函数或者二元函数最值时,基本的技巧是创造使用这些不等式的条件,如各变数都是正数,某些变数之积或者之和为常数等,解题中要根据这个原则对求解目标进行适当的变换,使之达到能够使用这些不等式求解最值的目的.三、解答题16.设函数2()f x x ax b =++,已知不等式()0f x <的解集为{|13}x x <<. (1)若不等式()f x m ≥的解集为R ,求实数m 的取值范围; (2)若()f x mx ≥对任意的实数2x ≥都成立,求实数m 的取值范围. 【答案】(1)1m ≤-;(2)12m ≤-. 【解析】试题分析:(1)首先根据不等式()0f x <的解集求得,a b 的值,然后求出函数()f x 的最小值,从而求m 的取值范围得;(2)首先将问题转化为34m x x≤-+,然后根据函数的单调性求得m 的取值范围. 试题解析:已知()0f x =,解为1,3,则1313a b +=-⎧⎨⋅=⎩ 43a b =-⎧⇒⎨=⎩(1)22()43(2)1f x x x x =-+=--,所以min ()1m f x ≤=-,(2)24334x x m x x x -+≤=-+恒成立, 因为34y x x=-+在[2,)+∞单调递增, 最小值在2x =时取到,最小值为12-,故12m ≤-.【考点】1、不等式恒成立问题;2、函数的单调性.【方法点睛】在给定自变量的取值范围时,解有关不等式问题时,往往采用分离变量或适当变形,或变换主元,或构造函数,再利用函数的单调或基本不等式进行求解,在解答时,一定要注意观察所给不等式的形式和结构,选取合适的方法去解答. 17.已知1tan()43πα+=.(1)求2sin 2cos 1sin 2ααα-+的值;(2)若α为直线l 的倾斜角,当直线l与曲线:1C x =求直线l 的纵截距b 的取值范围. 【答案】(1)-8;(2)52b ≤<. 【解析】试题分析:(1)首先根据条件求出tan α的值,然后利用倍角公式结合同角三角函数间的基本关系求解即可;(2)首先根据直线与圆有两个交点,利用点到直线的距离公式求得b 的范围,然后由直线与圆相切时求得b 的最小值,从而求得参数b 的取值范围.试题解析:(1)tan()tan144tan tan[()]4421tan()tan 44ππαππααππα+-=+-==-++, 故22222sin 2cos 2sin cos cos 2tan 181sin 2sin cos 2sin cos tan 12tan ααααααααααααα---===-+++++. (2)由题意可知直线1:2l y x b =-+,而曲线C 为圆22(1)(1)1x y -+-=的一部分(右半圆),当直线l 与圆22(1)(1)1x y -+-=有两个交点时,1|1|1b +-<,故可得3322b -+<<. 又曲线C 如图所示,当直线l 过点(1,2)时,min 52b =, 所以参数b的取值范围是52b ≤< 【考点】1、倍角公式;2、同角三角函数间的基本关系;3、直线与圆的位置关系.18.在ABC ∆中,角,,A B C 所对的边,,a b c 满足cos 2cos B b aC c c+=. (1)求角C 的大小;(2)若边长c =2a b +的最大值.【答案】(1)3C π=;(2)【解析】试题分析:(1)首先利用正弦定理结合两角和的正弦公式化简已知条件等式,由此求得cos C 的值,从而求得角C 的大小;(2)首先利用正弦定理结合两角和的正弦公式得到关于2a b +关于角的表达式,然后利用辅助角公式求出其最大值,也可首先利用余弦定理求得,a b 的关系式,然后利用基本不等式求出2a b +的最大值.试题解析:(1)因为cos 2cos B b aC c c+=,故cos sin sin cos 2sin cos B C B C A C +=. 也即sin 2sin cos A A C =,又sin 0A ≠,所以1cos 2C =,又(0,)C π∈,故3C π=.(2)2(sin 2sin )sin ca b A B C+=+2[sin()2sin ]B C B =++12[sin 2sin ]2B B B =++5sin B B =,令cosϕ=,sin ϕ=,则2)a b B ϕ+=+,当2B πϕ+=时,max (2)a b +==另解:由余弦定理可知:2222cos a b ab C =+-,即223a b ab =+-, 故2221173525(2)3(35)7(35)()(2)77228b b a a b b a b b b a a b +++-=+=⨯+≤⨯=+,所以(2)a b +≤,当735b b a =+时,即45a b =时,max (2)a b +== 【考点】1、正弦定理;2、两角和的正弦公式;3、辅助角公式.19.已知圆心在x 轴正半轴上的圆C 与直线512210x y ++=相切,与y 轴交于,M N 两点,且120MCN ∠=.(1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 交于不同的两点,A B ,若设点G 为OAB ∆的重心,当MNG ∆时,求直线l 的方程.备注:ABC ∆的重心G 的坐标为(,)33A B C A B Cx x x y y y ++++.【答案】(1)22(1)4x y -+=;(2)2y x =-+或123y x =-+.【解析】试题分析:(1)首先根据条件设出圆C 的标准方程,然后利用点到直线的距离公式求出圆心坐标及半径,从而得到圆C 的标准方程;(2)首先利用三角形面积公式求出||G x ,然后设出点,A B 的坐标及直线l 的方程,并联立圆的方程,从而利用重心的性质及韦达定理结合判别式求出直线l 的斜率,进而求得直线l 的方程. 试题解析:(1)由题意知圆心(,0)C a ,且0a >,由0120MCN ∠=知Rt MCO ∆中,60MCO ∠=,||OC a =,则||2CM a =, 于是可设圆C 的方程为222()4x a y a -+= 又点C 到直线512210x y ++=的距离为|521|213a d a +==, 所以1a =或2131a =-(舍), 故圆C 的方程为22(1)4x y -+=.(2)MNG ∆的面积1|||||2G G S MN x x ===||1G x =. 若设1122(,),(,)A x y B x y ,则1203G x x x ++=,即123G x x x +=,当直线l 斜率不存在时,ABO ∆不存在,故可设直线l 为2y kx =+,代入圆C 的方程22(1)4x y -+=中,可得22(1)(42)10k x k x ++-+=,则22122(1)(42)104003241k x k x k k k x x k ⎧⎪++-+=⎪⎪∆>⇒<>⎨⎪-⎪+=⎪+⎩或, 所以22431k k -=+或22431k k -=-+,得1k =-或13k =-, 故满足条件的直线l 的方程为2y x =-+或123y x =-+.【考点】1、圆的方程;2、点到直线的距离;3、直线方程;4、直线与圆的位置关系.【易错点睛】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零,若采用点斜式,应先考虑斜率不存在的情况.20.已知正项数列{}n a 的前n 项和为n S ,数列{}n a 满足11a =,2(1)n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设数列21{}(2)n a +的前n 项和为n A ,求证:对任意正整数n ,都有12n A <成立; (3)数列{}n b 满足1()2n n n b a =,它的前n 项和为n T ,若存在正整数n ,使得不等式11(2)22n n n n n T λ---<+-成立,求实数λ的取值范围. 【答案】(1)*,n a n n N =∈;(2)见解析;(3)0λ<或14λ>. 【解析】试题分析:(1)首先根据条件中的递推关系结合n a 与n S 的关系推出数列{}n a 为等差数列,由此求得数列{}n a 的通项公式;(2)首先结合(1)得到n A 的表达式,然后利用裂项法结合放缩法证明即可;(3)首先结合(1)得到n b 的表达式,然后利用错位相减法求出n T ,从而分n 为偶数、n 为奇数,利用换元法结合函数的单调性求得λ的取值范围.试题解析:(1)22n n n S a a =+,当2n ≥时,21112n n n S a a ---=+,两式相减得:22112n n n n n a a a a a --=-+-,所以11()(1)0n n n n a a a a --+--=.因为数列{}n a 为正项数列,故10n n a a -+≠,也即11n n a a --=,所以数列{}n a 为以1为首项1为公差的等差数列,故通项公式为*,n a n n N =∈.(2)1234n n A a a a a a =+++++22222111113456(2)n =+++++ 1111111111()()()()()2334455612n n <-+-+-+-++-++ 111222n =-<+所以,对任意正整数n ,都有12n A <成立.(3)易知2n nn b =,则 23111111123(1)22222n n n T n n -=⨯+⨯+⨯++-⨯+⨯① 231111111112(2)(1)222222n n n n T n n n -+=⨯+⨯++-⨯+-⨯+⨯②①-②可得:2111111121222222n n n n n T n +++=+++-⨯=- 故222n n n T +=-,所以不等式112(2)222n n n λ---<--成立,若n 为偶数,则1122222n n n λ---<--,所以211112()122n n λ-->-⨯++设111(0,]22n t -=∈,则2221(1)y t t t =-++=-在1(0,]2单调递减,故当12t =时,min 14y =,所以14λ>;若n 为奇数,则1122222n n n λ--<--,所以211112()122n n λ--<⨯-- 设11(0,1]2n t -=∈,则2221(1)y t t t =--=--在(0,1]单调递增,故当1t =时,max 0y =,所以0λ<综上所述,λ的取值范围0λ<或14λ>. 【考点】1、等差数列的定义及通项公式;2、错位相减法数列的和;3、函数的单调性;4、放缩法;5、不等式恒成立问题.【技巧点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类的问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了.。
宁波市2018学年第二学期期末考试高一数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 中,132,4a a ==,则公差d =( )A. 2-B. 1-C. 1D. 2【答案】C 【解析】 【分析】利用通项得到关于公差d 的方程,解方程即得解. 【详解】由题得2+24,1d d =∴=. 故选:C【点睛】本题主要考查数列的通项的基本量的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.2.不等式|1|1x <-的解集为( ) A. (,2)-∞B. (0,2)C. (1,2)-D.(,0)(2,)-∞+∞【答案】B 【解析】【分析】由题得-1<x-1<1,解不等式即得解. 【详解】由题得-1<x-1<1,即0<x <2. 故选:B【点睛】本题主要考查绝对值不等式的解法,意在考查学生对该知识的理解掌握水平和分析推理能力.3.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .若 3 : 4 : 5a : b : c =,则cos C 的值为( ) A.35B.45C.34D. 0【答案】D 【解析】 【分析】设3,4,5,a k b k c k ===利用余弦定理求cosC 的值. 【详解】设3,4,5,a k b k c k ===所以22291625cos 0234k k k C k k+-==⋅⋅.故选:D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.4.设等比数列{}n a 的前n 项和为n S ,若11a =,公比2q =,则4S 的值为( ) A. 15 B. 16C. 30D. 31【答案】A 【解析】 【分析】直接利用等比数列前n 项和公式求4S .【详解】由题得4412=1512S -=-.故选:A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.5.若非零实数,a b 满足a b <,则下列不等式成立的是( ) A.1ab< B.2b aa b+≥ C.2211ab a b< D.22a a b b +<+【答案】C 【解析】 【分析】对每一个不等式逐一分析判断得解.【详解】A,1a a b b b--=不一定小于0,所以该选项不一定成立; B,如果a <0,b <0时, 2b aa b+≥不成立,所以该选项不一定成立;C, 2222110a bab a b a b --=<,所以2211ab a b<,所以该不等式成立;D, 22()()()()(1)a a b b a b a b a b a b a b +-=+-+-=-++-不一定小于0,所以该选项不一定成立. 故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log||n a .其中一定为等比数列的是( ) A. ①③ B. ②④ C. ②③ D. ①②【答案】D 【解析】 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解. 【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a不是等比数列;④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选:D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.7.若不等式2(1)0mx m x m +-+>对实数x ∈R 恒成立,则实数m 的取值范围( )A. 1m <-或13m > B. 1m > C. 13m >D. 113m -<<【答案】C 【解析】 【分析】对m 分m ≠0和m=0两种情况讨论分析得解.【详解】由题得0m =时,x <0,与已知不符,所以m ≠0. 当m ≠0时,220(1)40m m m >∆=--<且, 所以13m >. 综合得m 的取值范围为13m >. 故选:C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.8.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为( ) A. 12π B. 16πC. 20πD. 24π【答案】A 【解析】 【分析】先求出外接球的半径,再求球的表面积得解.【详解】由题得正方体的对角线长为所以,=4=12R R S ππ∴=球. 故选:A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知n S 是等差数列{}n a 的前n 项和,890, 0S <S =.若n k S S ≥对*n N ∈恒成立,则正整数k 构成的集合是( ) A. {4,5} B. {4}C. {3,4}D. {5,6}【答案】A 【解析】 【分析】先分析出540,0a a =<,即得k 的值. 【详解】因为9550,90,0.S a a =∴=∴= 因为8184580,()0,02S a a a a <∴+<∴+< 所以40a <.所以()45min n S S S ==,所以正整数k 构成的集合是{4,5}. 故选:A【点睛】本题主要考查等差数列前n 项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.10.记max{,,}a b c 为实数,,a b c 中的最大数.若实数,,x y z 满足222363x y z x y z ++=⎧⎨++=⎩则max{||,||,||}x y z 的最大值为( )A.32B. 1 D.23【答案】B 【解析】 【分析】先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解. 【详解】因为222363x y z x y z ++=⎧⎨++=⎩,所以22236()3x y x y +++=,整理得:()2222912730,(12)49730y xy x x x ++-=∆=-⨯⨯-≥, 解得21x ≤, 所以||1x ≤,同理,2||1,|z |13y ≤<≤<. 故选:B【点睛】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分. 11.若关于x 的不等式20x ax b -+<的解集是(1,2)-,则a =________,b =_______. 【答案】 (1). 1 (2). -2 【解析】 【分析】由题得12(1)2ab -+=⎧⎨-⋅=⎩,解方程即得解.【详解】由题得12(1)2ab -+=⎧⎨-⋅=⎩,所以a =1,b =-2. 故答案: (1). 1 (2). -2【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.12.已知数列{}n a 的前n 项和31nn S =-,则首项1a =_____,通项式n a =______.【答案】 (1). 2 (2). 123n -⋅ 【解析】 【分析】当n=1时,即可求出1a ,再利用项和公式求n a . 【详解】当n=1时,11312a S ==-=,当2n ≥时,11n-1==3323n n n n n a S S ----=⋅,适合n=1. 所以123n n a -=⋅.故答案为:(1). 2 (2). 123n -⋅【点睛】本题主要考查项和公式求数列的通项,意在考查学生对该知识的理解掌握水平和分析推理能力.13.ABC ∆中,角,,A B C 的对边分别为,,a b c,已知,23A a b π===,则B =___,ABC ∆的面积S =____.【答案】 (1). 2π【解析】 【分析】由正弦定理求出B ,再利用三角形的面积公式求三角形的面积.【详解】由正弦定理得2=,sin 1,sin 2sin3B B B ππ∴=∴=.所以C=,16c π=,所以三角形的面积为112⋅.故答案为:(1).2π【点睛】本题主要考查正弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.如图所示为某几何体的三视图,则该几何体最长棱的长度为_____,体积为______.【答案】 (1). 83【解析】 【分析】先找到三视图对应的几何体原图,再求最长的棱长和体积. 【详解】由三视图得几何体原图是如图所示的四棱锥P-ABCD,底面是边长为2的正方形,侧棱PA ⊥底面ABCD,PA=2,所以最长的棱为=几何体体积2182233V =⋅⋅=.故答案为:(1). 83【点睛】本题主要考查三视图还原几何体和几何体体积是计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________. 【答案】6 【解析】 【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】由题得2)34x y x+y+=xy +≤(,所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y ≥6或x+y ≤-2(舍去), 所以x+y 的最小值为6. 当且仅当x=y=3时取等. 故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力. 16.记1()(1)(2)()nk f k f f f n ==+++∑,则函数41()||k g x x k ==-∑的最小值为__________.【答案】4 【解析】 【分析】利用|1||4||2||31(4)||2(3)|x x x x ||x x x x -+-+-+-≥---+---求解. 【详解】()=1234g x |x |+|x |+|x |+|x |----|1||4||2||31(4)||2(3)|x x x x ||x x x x =-+-+-+-≥---+---4=,当23x ≤≤时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.17.在ABC ∆中,角B 为直角,线段BA 上的点M 满足2BM 2 MA ==,若对于给定的,ACM ABC ∠∆是唯一确定的,则sin ACM ∠=_______.【答案】15【解析】【分析】 设,BC x ACM =∠=θ,根据已知先求出x 的值,再求sin ACM ∠的值.【详解】设,B C x A C M=∠=θ,则t ant A C B M C Bθ=∠-∠232132661x x x x x x x x-===++⋅+.依题意,若对于给定的,ACM ABC ∠∆是唯一的确定的,函数16x x+在(1,+∞)是减函数,所以x =1tan 5θ=θ=.故答案为:15【点睛】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题 :本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.设等差数列{}n a 的前n 项和为n S ,且142,14a S ==.(I )求数列{}n a 的通项公式;(II )设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求n T .【答案】(I )1n a =n+;(II )2(2)n nT n =+.【解析】 【分析】(I )根据已知的两个条件求出公差d,即得数列{}n a 的通项公式;(II )先求出111(1)(2)n n a a n n +=++,再利用裂项相消法求和得解. 【详解】(I )由题得4342+14,12d d ⋅⋅⋅=∴=, 所以等差数列的通项为2+1)11n a =n n+-⋅=(; (II )因为11111(1)(2)12n n a a n n n n +==-++++, 所以11111111233412222(2)n n T n n n n =-+-++-=-=++++. 【点睛】本题主要考查等差数列的通项的求法,考查等差数列前n 项和基本量的计算,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.ABC ∆中,角,,A B C 的对边分别为,,a b c ,且cos cos cos 2a B b AC c+=.(I )求角C 的大小;(II )若4ab =,求c 的最小值. 【答案】(I )3C π=;(II )最小值为2.【解析】 【分析】(I )sin cos sin cos cos 2sin A B B AC C+=,化简即得C 的值;(II )【详解】(I )因为sin cos sin cos sin )sin 1cos =2sin 2sin 2sin 2A B B A A B C C C C C ++===(, 所以3C π=;(II )由余弦定理可得,222c a b ab =+-,因为222a b ab +≥,所以24c ab ≥=, 当且仅当2,a =b= c 的最小值为2.【点睛】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数21()1()f x x a x x R a ⎛⎫=-++∈ ⎪⎝⎭.(I )当12a =时,求不等式()0f x <的解集; (II )若关于x 的不等式()0f x <有且仅有一个整数解,求正实数...a 的取值范围.【答案】(I )1,22⎛⎫⎪⎝⎭;(II )12a <≤,或112a ≤<【解析】 【分析】(I )直接解不等式25102x x -+<得解集;(II )对a 分类讨论解不等式分析找到a 满足的不等式,解不等式即得解. 【详解】(I )当12a =时,不等式为25102x x -+<, 不等式的解集为1,22⎛⎫⎪⎝⎭,所以不等式()0f x <的解集为1,22⎛⎫⎪⎝⎭; (II )原不等式可化为1()0x a x a ⎛⎫--< ⎪⎝⎭, ①当1a a=,即1a =时,原不等式的解集为∅,不满足题意;②当1a a >,即1a >时,1,x a a ⎛⎫∈ ⎪⎝⎭,此时101a <<,所以12a <≤;③当1a a <,即01<a <时,1,x a a ⎛⎫∈ ⎪⎝⎭,所以只需112a <≤,解得112a ≤<; 综上所述,12a <≤,或112a ≤<. 【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3,2a b B A ===. (I )求cos A 的值; (II )求c 的值.【答案】(1)3;(2)5 【解析】试题分析:(1)依题意,利用正弦定理3sin A =及二倍角的正弦即可求得cosA 的值;(2)易求sinB=13,从而利用两角和的正弦可求得sin (A+B ),在△ABC中,此即sinC 的值,利用正弦定理可求得c 的值. 试题解析:( 1)由正弦定理可得,即:3sin sin2A A =,∴3sin 2sin cos A A A =,∴cos 3A =.(2由(1)cos A =,且0180A ︒<<︒,∴sin A ===,∴sin sin22sin cos 23B A A A ====,221cos cos22cos 1213B A A ==-=⨯-=⎝⎭∴()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦=sin cos cos sin A B A B +=133+=由正弦定理可得:sin sin c aC A=,∴3sin 5sin a C c A ===。
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537 C.37.378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)44cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
宁波市2017-2018学年度第二学期期末九校联考高一数学试题一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 圆的圆心坐标和半径分别是( )A. B. C. D.【答案】B【解析】分析:将圆的一般方程化为标准方程后可得结果.详解:由题意得圆的标准方程为,故圆的圆心为,半径为1.故选B.点睛:本题考查圆的一般方程和标准方程间的转化及圆心、半径的求法,考查学生的转化能力,属于容易题.2. 已知,则( )A. B. C. D.【答案】A【解析】分析:将展开得到,然后两边平方可得所求.详解:∵,∴,两边平方,得,∴.故选A.3. 已知为等比数列的前项和,且,则( )A. 510B. 510C. 1022D. 1022【答案】B【解析】分析:根据等比数列的前项和公式求出,由可求得,然后再求.详解:∵,∴,,,∴.∵数列为等比数列,∴,即,又,∴,∴,∴510.故选B.点睛:本题考查等比数列的运算,解题时利用与的关系,即得到数列的项,再根据等比中项求出即可.另外本题也可利用以下结论求解:若等比数列的前项和为,则有,利用此结论可简化运算,提高解题的速度.4. 若实数满足不等式组,则的最大值为( )A. B. C. D.【答案】D【解析】分析:令,画出不等式组表示的可行域,利用线性规划的知识求解可得所求.详解:画出不等式组表示的可行域如图阴影部分所示.令,变形得.平移直线,结合图形可得,当直线经过可行域内的点A时,直线在y轴上的截距最大,此时z取得最大值.由,得,故,∴.故选D.点睛:利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的直线l;②平移:将l平行移动,以确定最优解所对应的点的位置;③求值:解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.5. 若且,则下列不等式成立的是( )A. B. C. D.【答案】C【解析】分析:根据函数的性质及不等式的性质对四个选项逐一分析排除可得结论.详解:对于A,由得,所以.故A不正确.对于B,由得,所以.故B不正确.对于C,由得,所以.故C正确.对于D,由得.故D不正确.故选C.点睛:判断关于不等式的命题真假的三种方法(1)直接运用不等式的性质:把要判断的命题和不等式的性质联系起来考虑,进行推理判断.(2)利用函数的单调性:利用指数函数、对数函数、幂函数的单调性等进行判断.(3)特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值,然后进行比较、判断.6. 直线与直线垂直,垂足为,则( )A. B. C. D.【答案】B详解:∵直线与直线垂直,∴,∴,∴直线方程即为.将点的坐标代入上式可得,解得.将点的坐标代入方程得,解得.∴.故选B.点睛:本题考查两直线的位置关系及其应用,考查学生的应用意识及运算能力,解题的关键是灵活运用所学知识解题.7. 在中,若,则( )A. B. C. D.【答案】D【解析】分析:应用正弦定理及比例的性质求解即可得到结论.详解:在中,由正弦定理得,∴,∴.故选D.点睛:正弦定理:,其中R是三角形外接圆的半径,由正弦定理可以得到变形:①;②等,解题时要灵活运用这些变形.8. 设表示不超过的最大整数,如.已知数列满足:,则( )A. 1B. 2C. 3D. 4【答案】A【解析】分析:由题意先求出数列的通项公式,再求出,最后结合的定义求解.详解:∵,∴,∴,又满足上式,∴.∴,∴,∴.故选A.点睛:本题考查累加法求数列的通项公式和利用裂项相消法求数列的和,考查学生的运算能力和理解运用新知识解决问题的能力,解题的关键是正确理解所给的运算的定义.9. 设,则的大小顺序为( )A. B. C. D.【答案】B【解析】分析:由题意得均为正数,故可采取作商法来比较大小.详解:由题意得.∵,∴.又,∴.综上可得.故选B.点睛:作差法和作商法是两种常用的比较大小的方法,解题时要灵活选择相应的方法.作差法的主要步骤为:作差——变形——判断正负——得到结论.当所给不等式完全是积、商、幂的形式时,可考虑作商法,作商法的步骤为:作商——变形——判断商与1的关系——得到结论.10. 已知等差数列中,,则的取值范围是( )A. B. C. D.【答案】C【解析】分析:根据等差数列的知识可得,故问题可转化为直线直线与圆有公共点处理,然后根据圆心到直线的距离小于等于半径可得所求.详解:已知等差数列中,,令,所以直线与圆有公共点,所以,解得.故选C.点睛:本题难度较大,考查学生的转化能力和运算能力.解答本题的关键是将问题转化为直线和圆的位置关系处理,解题中要用到较强的变化技巧.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11. 已知直线,直线,则过定点_____________;当________时,与平行.【答案】(1). (2).【解析】分析:将直线的方程变形为,令可得定点坐标;根据两直线平行的等价条件可得的值.详解:直线的方程变形为,令,解得,所以直线过定点.当与平行时,则有,解得,即时,与平行.点睛:直线过定点的问题实质上是恒成立的问题,判断直线过定点时,先把直线方程整理成(为参数)的形式,解方程组可得定点的坐标.12. 若直线被圆截得的弦长为,则圆心到直线的距离是________________ ; _______________.【答案】(1). (2).【解析】分析:根据半径、弦心距和半弦长构成的直角三角形可求得弦心距,即为圆心到直线的距离;然后根据点到直线的距离公式可求得.详解:设圆心到直线的距离为,则.由点到直线的距离公式,得,∴,∴.点睛:计算直线被圆截得的弦长时常用几何法求解,即运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.这是研究圆问题的常用方法,利用性质求解可简化运算,提高解题的效率.13. 在中,若,则__________________;当时,则的面积等于______________.【答案】(1). (2).【解析】分析:由可得三角形的三边比,再根据余弦定理可得,进而可求得,再根据可得,于是可求得三角形的面积.详解:∵,∴,设,由余弦定理得,∴.∵,,∴,∴的面积为.点睛:解题时注意正弦定理变形的灵活应用,另外三角形的面积常与正余弦定理结合在一起考查,解题时要根据题意合理选择三角形的面积公式,同时还要注意整体代换的应用.14. 已知数列成等差数列,且,则_________;若函数,记则数列的前5项和__________.【答案】(1). (2). 5【解析】分析:根据条件及等差数列下标和的性质可求得;化简所给函数得,于是可得,由此可得所求值.详解:∵数列等差数列,∴,∴,∴.∵,∴,同理,又,∴.点睛:下标和的性质是等差数列的重要性质,利用这一性质可简化等差数列的有关运算;另外,解答本题时要合理运用三角函数的诱导公式及数列的性质,运用整体代换的思路求解问题.15. 已知点在直线的两侧,则实数的取值范围是_________________.【答案】【解析】分析:将点的坐标代入中,根据所得两式异号得到不等式,解不等式可得所求.详解:∵点在直线的两侧,∴,整理得,解得或.∴实数的取值范围是.点睛:(1)解答本题时用到了结论:直线Ax+By+C=0同一侧的所有点(x,y),它的坐标(x,y)代入Ax+By+C所得到实数的符号都相同.(2)解高次不等式时,可借助数轴采用穿根的方法求解,能达到简化运算、容易得到不等式解集的目的.16. 已知实数满足:,,则的最大值为__________.【答案】【解析】分析:根据线性规划先求出的范围,再根据柯西不等式求解.详解:画出不等式组表示的可行域如图阴影部分所示.表示可行域内的点到原点的距离,结合图形可得点A到原点的距离最大,由,解得,故,∴.由柯西不等式得,当且仅当时等号成立.∴的最大值为.点睛:在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,可按照“一看、二构造、三判断、四运用”的步骤求解.17. 设△的三边所对的角分别为.已知,则的最大值为__________.【答案】【解析】分析:由条件及余弦定理得到,再根据正弦定理和三角变换得到和的关系,然后根据两角和的正切公式和基本不等式可得结果.详解:由已知及余弦定理,得∴,∴.由正弦定理及得,∴∴,∴且.∴,当且仅当,即时等号成立.∴的最大值为.点睛:本题考查解三角形及三角变换和用基本不等式求最值,解题时注意合理的将三角形中的边角进行互化,得到和的关系是解题的关键.利用基本不等式求最值时,要注意“一正、二定、三相等”这三个条件缺一不可,当不满足应用的条件时,要进行合理变形使之满足使用不等式需要的条件.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18. 已知函数.(Ⅰ)求函数的最大值、最小值以及相应的的值;(Ⅱ)解关于的方程.【答案】(Ⅰ)时,. 当时,(II)解集为.【解析】分析:(Ⅰ)将函数化为,然后根据的范围得到的范围,再根据三角函数的图象得到最值即可.(Ⅱ)根据三角函数的相关知识求出的值,进而得到,即方程的解.详解:(Ⅰ)由题意得.∵∴.∴当,即时,函数有最小值,且;当,即时,函数有最大值,且.(II)由,得,∴或,,∴,又,∴.即方程的解为.点睛:解决三角函数的有关问题时,首先要将函数化为的形式,然后根据整体代换的思路,将作为一个整体,并结合正弦函数的相关性质求解,求解时注意条件中所给的自变量的取值范围的限制.19. 已知三边是连续的三个自然数.(Ⅰ)求最小边的取值范围;(Ⅱ)是否存在这样的,使得其最大内角是最小内角的两倍?若存在,试求出这个三角形的三边;若不存在,请说明理由.【答案】(Ⅰ);(II)存在,且三边分别为.【解析】(Ⅰ)设出三角形的三边,根据三边关系可得所求.(Ⅱ)假设存在满足条件的三角形,且最大角为,最小角为,则.然后根据正弦定理和余弦定理分别得到的值,建立方程后可得结论.详解:(Ⅰ)设角所对的边分别是,且,由三角形的三边关系得,解得.所以最小边的取值范围是.(II)由题意得三个角中最大角为,最小角为,假设存在,使得其最大内角是最小内角的两倍,即.由正弦定理得,即,∴.又由余弦定理得,∴,解得.∴的三边分别为,即存在唯一满足三边是连续的三个自然数且最大角是最小角的两倍,且三角形的三边分别为.另解: 设,三个角中最大角为,最小角为.则,∴,由余弦定理得代入上式化简得,∴,解得.∴三角形的三边分别为,即存在唯一满足三边是连续的三个自然数且最大角是最小角的两倍.点睛:(1)本题考查解三角形的应用,解题时可根据题意并结合边角关系得到相应的关系式,从而达到求解的目的.(2)解决探索性问题时,可先假设结论成立,并在此基础上进行推理,看是否得到矛盾,若得到矛盾则假设不成立;若得不到矛盾,则假设成立.20. 已知圆,圆.(Ⅰ)试判断圆与圆的位置关系;(Ⅱ)在直线上是否存在不同于的一点,使得对于圆上任意一点都有为同一常数.【答案】(Ⅰ)相交;(II).【解析】分析:(Ⅰ)根据几何法和代数法两种方法可判断两圆的位置关系.(Ⅱ)假设存在满足条件的点和,根据为常数得到关于的方程,将此方程与圆的方程比较可得所求结果.详解:(Ⅰ)由题意得圆的标准方程为,的标准方程为.∴两圆的圆心距为,又两圆的半径之差,两圆的半径之和,∴,∴两圆相交.解法二:由,解得,所以两圆有两个公共点,所以两圆相交.(Ⅱ)由题意得直线的方程为.假设直线上存在不同于的一点满足条件,设,,则由题意得,化简得,显然上式与圆的方程为同一方程,则解得或(不合题意,舍去).所以所求的点的坐标为.点睛:(2)判断两圆的位置关系时,可根据圆心距与两圆半径间的关系判断,也可通过解方程组根据解得个数判断,解题时灵活选择方法求解.(2)解析几何中的探索性问题,解决时可先假设结论成立,并在此基础上进行推理,看是否得到矛盾,若得到矛盾则假设不成立;若得不到矛盾,则假设成立.21. 已知函数(Ⅰ) 当时,解关于的不等式;(Ⅱ)若不等式的解集为,且,求的取值范围.【答案】(Ⅰ);(II).【解析】分析:(Ⅰ)将不等式化为一般形式,然后根据的取值情况分类讨论求解即可.(Ⅱ)将条件中的集合间的包含关系转化为不等式恒成立的问题解决,然后分离参数后再转化为求函数的最值的问题,最后根据基本不等式求解可得所求.详解:(Ⅰ)由得,即①当,即时,解得;②当即时,解得或;③当,即时,由于,故解得.综上可得:当时,解集为或;当时,解集为;当时,解集为.(II)不等式的解集为,且,即任意的不等式恒成立.即对任意的恒成立,由于,∴对任意的恒成立.令,∵,当且仅当,即时等号成立.∴,∴实数的取值范围是.另解:不等式的解集为,且,即任意的不等式恒成立.设(1)当时,,解得(2)当时,, 当时恒小于0,不满足,舍去(3)当时,(ⅰ),即,得(ⅱ),解得综上可得实数的取值范围是.点睛:解含参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.22. 已知数列满足,,.(Ⅰ)求证:是等比数列,并写出的通项公式;(Ⅱ)设的前项和为,求证:.【答案】(Ⅰ)证明见解析,;(II)见解析.【解析】分析:(Ⅰ)由条件可得,变形可得,进而可证得数列为等比数列,进而可得通项公式.(Ⅱ)将变形得,求和后可得;另一方面,,由此可证得,故得结论成立.详解:(I)由题意得,将两边同除以,得,即,又,∴数列是首项为,公比为的等比数列.∴,∴,∴.(II)由(I)可得,∴∴成立.又,∴,,又,,∴.综上可得.点睛:(1)证明等比数列时不要忘了证明数列中无零项,可将此问题转化为证明首项不为零即可.(2)用放缩法证明数列中的不等式时,常用的放缩方法有两种,一是先放缩再求和,二是先求和再放缩,解题时要根据条件选择合适的求解方法.。
2018-2019学年浙江省宁波市九校联考高一(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若0a b <<,那么下列不等式中正确的是( ) A .2ab b <B .2ab a >C .11a b< D .11a b> 2.(4分)直线50x +-=的倾斜角为( ) A .30-︒B .60︒C .120︒D .150︒3.(4分)已知直线1:310l ax y ++=与直线2:2(1)10l x a y +++=互相平行,则实数a 的值为( ) A .3-B .35-C .2D .3-或24.(4分)已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于( ) A .8-B .6-C .10D .05.(4分)已知直线:0l kx y k -+=被圆224x y +=截得的弦长为点(,)m n 是直线l 上的任意一点,则22m n +的最小值为( )A .1B .2C .3D .46.(4分)若不等式组201220x y y kx x y +-⎧⎪+⎨⎪--⎩,表示的平面区域为直角三角形,则该三角形的外接圆面积为( ) A .454πB .92π C .92π或454π D .18π或45π7.(4分)已知数列{}n a 是正项等比数列,且37221a a +=,则5a 的值不可能是( ) A .3B .4C .5D .68.(4分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 成等差数列,3B π=,ABC ∆的面积为b 的值为( )A .2BC.D.9.(4分)如图所示,在ABC ∆中,4C π=,3BC =,点D 在边AC 上,A ABD ∠=∠,若522BD =,则cos (A = )A 310B 10C 25D 5 10.(4分)已知公差为d 的等差数列{}n a 前n 项和为n S ,若有确定正整数0n ,对任意正整数m ,000n n m S S +<恒成立,则下列说法错误的是( ) A .10a d < B .||n S 有最小值C .0010n n a a +>D .00120n n a a ++>二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017-2018学年浙江省宁波市九校高一下学期期末联考数学
试题
一、单选题
1.圆的圆心坐标和半径分别是( )
A.B.C.D.
【答案】B
【解析】分析:将圆的一般方程化为标准方程后可得结果.
详解:由题意得圆的标准方程为,
故圆的圆心为,半径为1.
故选B.
点睛:本题考查圆的一般方程和标准方程间的转化及圆心、半径的求法,考查学生的转
化能力,属于容易题.
2.已知,则( )
A.B.C.D.
【答案】A
【解析】分析:将展开得到,然后两边平方可得所求.
详解:∵,
∴,
两边平方,得,
∴.
故选A.
点睛:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,已知其中一个式子的值,
第 1 页共 21 页。
宁波市高一数学下学期期末试卷
10.如图,三棱柱的各棱长均为2,侧棱与底面所成的角为,为锐角,且侧面底面,给出下列四个结论:
③直线与平面所成的角为 ;
其中正确的结论是
二、填空题:本大题共7个小题,每小题4分,共28分. 把答案填在答题卷的相应位置
11.求值: ___________.
12.圆锥的母线长为3,侧面展开图的中心角为,那么它的表面积为___________.
13.将棱长为2的正方体切割后得一几何体,其三视图如图所示,
则该几何体的体积为___________.
14.正数、满足,那么的最小值等于
___________.
15.已知数列是首项为3,公差为1的等差数列,数列
是首项为,公比也为的等比数列,其中,那么数
列的前项和 ________.
16.在中,角所对的边分别为,若成等差数列,则角
的取值范围是__________(角用弧度表示).
17.在数列中,,, ( ),把数列的各项按如下方法进行分组:( )、( )、( )、,记为第组的第个数(从前到后),若 = ,则 ____________.
查字典数学网小编为大家整理了宁波市高一数学下学期期末试卷,希望对大家有所帮助。
浙江省宁波市2017-2018学年第二学期期末考试高一数学试卷(含详细答案) XXX-2018学年第二学期期末考试高一数学试卷第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若数列{an}为等比数列,且a2=1,q=2,则a4=()A.1.B.2.C.3.D.42.在△ABC中,内角A,B,C所对的边分别是a,b,c。
C=45°,b=1,B=30°,则边长c=()A.3.B.√3.C.2.D.2√33.函数f(x)=x2-4x-5的定义域为()A.R。
B.[1,5]。
C.[-1,5]。
D.(-∞,-1]∪[5,+∞)4.在△ABC中,内角A,B,C所对的边分别是a,b,c。
若B=π/3,则a2+c2-b2=()A.3/4.B.1.C.2.D.3/25.一个正方体的顶点都在表面积为48π的球面上,则该正方体的棱长为()A.2.B.2√2.C.4.D.4/√36.设a,b∈R,若a-b>0,则下列不等式中正确的是()A.b-a>0.B.a+b0.D.a-b<07.一圆锥侧面积是其底面积的3倍,则该圆锥侧面展开图圆心角的弧度数为()A.11π/6.B.π/2.C.π/3.D.π/48.设△ABC的内角A,B,C所对的边分别为a,b,c。
若a,b,c成等差数列,且5sinA=3sinB,则C=()A.2π/3.B.3π/4.C.5π/6.D.π9.公差为d的等差数列{an}与公比为q的等比数列{bn}分别满足an≤2,bn≤2,n∈N*,则下列说法正确的是()A.d≠0,q可能不为1.B.d=0,q=1C.q=1,d可能不为0.D.d可能不为0,q可能不为110.已知正实数a,b满足a+ab+b=3,则(2a+b-1)/(2+b-a)的取值范围是()A.[3,+∞)。
B.(1,3]。
2018-2019学年浙江省宁波市九校联考高一(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若0a b <<,那么下列不等式中正确的是( ) A .2ab b <B .2ab a >C .11a b< D .11a b> 2.(4分)直线50x +-=的倾斜角为( ) A .30-︒B .60︒C .120︒D .150︒3.(4分)已知直线1:310l ax y ++=与直线2:2(1)10l x a y +++=互相平行,则实数a 的值为( ) A .3-B .35-C .2D .3-或24.(4分)已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于( ) A .8-B .6-C .10D .05.(4分)已知直线:0l kx y k -+=被圆224x y +=截得的弦长为点(,)m n 是直线l 上的任意一点,则22m n +的最小值为( )A .1B .2C .3D .46.(4分)若不等式组201220x y y kx x y +-⎧⎪+⎨⎪--⎩,表示的平面区域为直角三角形,则该三角形的外接圆面积为( ) A .454πB .92π C .92π或454π D .18π或45π7.(4分)已知数列{}n a 是正项等比数列,且37221a a +=,则5a 的值不可能是( ) A .3B .4C .5D .68.(4分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 成等差数列,3B π=,ABC ∆的面积为b 的值为( )A .2BC.D.9.(4分)如图所示,在ABC ∆中,4C π=,3BC =,点D 在边AC 上,A ABD ∠=∠,若522BD =,则cos (A = )A 310B 10C 25D 5 10.(4分)已知公差为d 的等差数列{}n a 前n 项和为n S ,若有确定正整数0n ,对任意正整数m ,000n n m S S +<恒成立,则下列说法错误的是( ) A .10a d < B .||n S 有最小值C .0010n n a a +>D .00120n n a a ++>二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省重点名校2017-2018学年高一下学期期末统考数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x ,y 为正实数,则( ) A .2lgx+lgy =2lgx +2lgy B .2lg (x+y )=2lgx •2lgy C .2lgx•lgy =2lgx +2lgy D .2lg (xy )=2lgx •2lgy【答案】D 【解析】因为a s+t =a s •a t ,lg (xy )=lgx+lgy (x ,y 为正实数), 所以2lg (xy )=2lgx+lgy =2lgx •2lgy ,满足上述两个公式, 故选D .2.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为32,则a 的值为( )A .2B .3C .32D .1【答案】B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.3.已知函数()()sin f x x ωϕ=A +(0A >,0ω>,2πϕ<)的部分图象如图所示,则ϕ=( )A .6π-B .6π C .3π-D .3π 【答案】D 【解析】试题分析:由图可知2A =,4()312T πππ=⨯-=,∴2ω=,又()212f π=,∴22()122k k Z ππϕπ⨯+=+∈,∴23k πϕπ=+,又2πϕ<.∴3πϕ=.考点:由图象确定函数解析式.4.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .B .C .D .12【答案】B 【解析】 【分析】三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成. 【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成,选B.【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.5.等差数列{}n a 中2912142078a a a a a a ++-+-=,则9314a a -=( ) A .8 B .6C .4D .3【答案】D 【解析】 【分析】设等差数列的公差为d ,根据题意,求解1104a d +=,进而可求得93113(10)44a a a d -=+,即可得到答案. 【详解】由题意,设等差数列的公差为d ,则291214207112202(10)8a a a a a a a d a d ++-+-=+=+=,即1104a d +=, 又由931111138(2)(10)3444a a a d a d a d -=+-+=+=,故选D.本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为d ,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题. 6.sin180cos45-︒︒的值等于()A .1BC .-D .1+【答案】C 【解析】 【分析】根据特殊角的三角函数值,得到答案. 【详解】sin180cos45-︒︒022=-=-. 故选C 项. 【点睛】本题考查特殊角的三角函数值,属于简单题.7.若,a b ∈R 且||a b <,则下列四个不等式:①()0a b a +>,②()0a b b -<,③20b a ->,④33a b >中,一定成立的是( ) A .①② B .③④C .②③D .①②③④【答案】C 【解析】 【分析】根据,a b ∈R 且||a b <,可得0b <,||a b <,且a b <,0a b +>,根据不等式的性质可逐一作出判断. 【详解】由,a b ∈R 且||a b <,可得0b <, ∴||a b <,且a b <,0a b +>,由此可得①当a=0时,()0a b a +>不成立, ②由0a b -<,0b <,则()0a b b -<成立, ③由0b <,a b <,可得20b a ->成立, ④由a b <,若0a b <<,则33a b >不成立, 因此,一定成立的是②③,【点睛】本题考查不等式的基本性质的应用,属于基础题.8.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有一点(P -,则cos sin 2παα⎛⎫+-= ⎪⎝⎭( )A .3-B .3C D .【答案】D 【解析】 【分析】根据任意角三角函数定义可求得cos α;根据诱导公式可将所求式子化为2cos α,代入求得结果. 【详解】由(P -得:cos3α==-cos sin cos cos 2cos 2πααααα⎛⎫+-=+=∴= ⎪⎝⎭本题正确选项:D 【点睛】本题考查任意角三角函数值的求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.9.直线l 是圆224x y +=在(-处的切线,点P 是圆22430x x y -++=上的动点,则点P 到直线l 的距离的最小值等于( )A .1BCD .2【答案】D 【解析】 【分析】先求得切线方程,然后用点到直线距离减去半径可得所求的最小值. 【详解】圆224x y +=在点(-处的切线为:4l x -+=,即:40l x -+-=, 点P 是圆22(2)1x y -+=上的动点,圆心(2,0)到直线:40l x +=的距离3d ==,∴点P 到直线l 的距离的最小值等于1312d -=-=.故选D . 【点睛】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题. 10.已知向量12,e e 满足121e e ==,120e e ⋅=.O 为坐标原点,)1222OQ e e =+.曲线{}12|cos sin ,0,02C P OP r e r e r θθθπ==+>≤<,区域{|1||2}P PQ Ω=≤≤.若C Ω是两段分离的曲线,则( ) A .35r << B .35r <≤C .35r ≤<D .35r ≤≤【答案】A 【解析】 【分析】由圆的定义及平面向量数量积的性质及其运算可得:点P 在以O 为圆心,r 为半径的圆上运动且点P 在以Q 为圆心,半径为1和2的圆环区域运动,由图可得解. 【详解】建立如图所示的平面直角坐标系,则()()12,1001e e ==,,,)(1222=22OQ e e =+,,由{}12|cos sin ,0,02C P OP r e r e r θθθπ==+>≤<, 则(OP r r =,即点P 在以O 为圆心,r 为半径的圆上运动, 又{|1||2}P PQ Ω=≤≤,则点P 在以Q 为圆心,半径为1和2的圆环区域运动, 由图可知:当C∩Ω是两段分离的曲线时, r 的取值范围为:3<r<5, 故选:A . 【点睛】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.11.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = ( ) A .1 B .2C .4D .8【答案】A 【解析】试题分析:在等比数列中,由31116a a ⋅=知74a =,7514a a ==,故选A . 考点:等比数列的性质. 12.已知数列{}n a 的前n 项和()214nna S +=,那么( )A .此数列一定是等差数列B .此数列一定是等比数列C .此数列不是等差数列,就是等比数列D .以上说法都不正确【答案】D 【解析】 【分析】利用1112n n n S n a S S n -=⎧=⎨-≥⎩即可求得:11a =,当2n ≥时,1n n a a -=- 或12n n a a --=,对n 赋值2,3,选择不同的递推关系可得数列:1,3,-3,…,问题得解. 【详解】因为1112n n n S n a S S n -=⎧=⎨-≥⎩ ,当1n =时,()11214a a=+ ,解得11a =,当2n ≥时,()()22111144n n n nn a a a S S --++-=-= ,整理有,()()1120n n n n a a a a --+--= ,所以1n n a a -=- 或12n n a a --=若2n =时,满足12n n a a --=,3n =时,满足1n n a a -=-,可得数列:1,3,-3,…此数列既不是等差数列,也不是等比数列 故选D 【点睛】本题主要考查利用n S 与n a 的关系求n a ,以及等差等比数列的判定. 二、填空题:本题共4小题13.已知点(,)M a b 在直线:3425l x y +=__________. 【答案】5 【解析】 【分析】表示点(0,0)到点(,)a b 的距离,再利用点到直线的距离求解. 【详解】表示点(0,0)到点(,)a b 的距离. 又∵点(,)M a b 在直线:3425l x y +=上,∴(0,0)到直线34250x y +-=的距离d ,且5d ==.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题. 14.设向量()3,1a =,()3,b x =,且a b ⊥,则x =______.【答案】3- 【解析】 【分析】根据a b ⊥即可得出0a b ⋅=,进行数量积的坐标运算即可求出x . 【详解】 ∵a b ⊥;∴30a b x ⋅=+=; ∴x =﹣1; 故答案为﹣1. 【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是_____________. ①总存在某个内角α,使得1cos 2α≥; ②存在某钝角ABC ∆,有tan tan tan 0A B C ++>; ③若20a BC b CA c AB ⋅+⋅+⋅=,则ABC ∆的最小角小于6π. 【答案】①③ 【解析】 【分析】①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在(0,]3π内,即可判定;②中,利用两角和的正切公式,化简得到tan tan tan tan tan tan A B C A B C ++=,根据钝角三角形,即可判定;③中,利用向量的运算,得到(2)(2)a b AC a c AB -=-⋅,由于,AC AB 不共线,得到220a b a c -=-=,再由余弦定理,即可判定.【详解】由题意,对于①中,在ABC ∆中,当1cos 2α≥,则(0,]3πα∈, 若ABC ∆为直角三角形,则必有一个角在(0,]3π内;若ABC ∆为锐角三角形,则必有一个内角小于等于3π;若ABC ∆为钝角三角形,也必有一个角小于3π内,所以总存在某个内角α,使得1cos 2α≥,所以是正确的;对于②中,在ABC ∆中,由tan tan tan()tan 1tan tan A BA B C A B++==--,可得tan tan tan tan tan tan A B C A B C ++=,由ABC ∆为钝角三角形,所以tan tan tan 0A B C <,所以tan tan tan 0A B C ++<,所以不正确; 对于③中,若20a BC b CA c AB ⋅+⋅+⋅=,即)2(0a AC b CA c B AB A ⋅+-⋅+⋅=, 即(2)(2)a b AC a c AB -=-⋅,由于,AC AB 不共线,所以220a b a c -=-=, 即2a b c ==,由余弦定理可得22273cos 28b c a A bc +-==>,所以最小角小于6π, 所以是正确的.综上可得,命题正确的是①③. 故答案为:①③. 【点睛】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.【答案】3 【解析】 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题. 三、解答题:解答应写出文字说明、证明过程或演算步骤。