数学期望的定义及性质
- 格式:ppt
- 大小:1.05 MB
- 文档页数:14
第四节 数学期望的定义及性质引例:赌场规定,赌客以掷骰子的方式决定输赢,每掷一次骰子,点数ξ在4以上可赢10元,点数ξ为4可赢2元,点数ξ在4一下则输掉8元。
考虑,从总体上看,或平均来看,一个赌徒,每次掷骰子是输还是赢?输赢的钱数为多少?粗糙的做法:102(8)433++-=,因此说,赌徒平均每赌一次,赢得43元。
从直觉就可以判断,上述做法是不合理的,应为没有考虑到每次掷骰子,赢10元,赢2元,输8元的可能性是不同的。
所以,不能把它们平等地加在一起除以3。
考虑下面的做法:如果共掷了N 次骰子,其中点数在4以上的结果共有a N 次,点数为4的结果共有b N 次,点数小于4的结果共有c N 次。
平均来看,赌徒每赌一次,赢(输)的钱数为102(8)102(8)a b c a b c N N N N N NN N N N⋅+⋅+-⋅=⋅+⋅+-⋅上式等号右边是一个加权平均,赢10元,2元,输8元的权重a N N ,b N N ,cN N分别是赢10元,2元,输8元这三种结果在N 次赌博中发生的频率。
这样计算出来的平均值比102(8)3++-合理得多。
但是,用这种方法计算的平均值仍有缺陷,因为对于不同的N ,权重,也即频率a N N ,b N N ,c NN可能不同,因此得到的平均值不同;另外,即使N 相同,今天赌N 次得到的权重a N N ,b N N ,c NN和明天赌N 次得到的权重也未必相同。
因此需要进一步探索更合理的计算均值的方法。
由概率的频率定义知道,当赌博的总次数N →∞时,赢10元,2元,输8元的频率aN N,b N N ,c NN分别趋近于它们的概率a P ,b P ,c P ,再注意到概率的内涵:一个随机事件的概率是做一次随机试验这个随机事件发生的可能性,因此,用a P ,b P ,c P 取代a N N ,b NN,cN N作为权重计算平均值,即 102(8)a b c P P P ⋅+⋅+-⋅显然,上式最能恰当的反映赌客平均每次掷骰子输赢的情况。
第29讲数学期望的性质2数学期望的性质:可推广到任意有限个随机变量线性组合的情况:0011()().n ni i i i i i E c c X c c E X ==+=+∑∑1. 设c 是常数, 则有();E c c =2. 设X 是一个随机变量, c 是常数, 则有()();E cX cE X =3. 设X, Y 是两个随机变量, 则有()()();E X Y E X E Y +=+()()();E aX bY c aE X bE Y c ++=++将上面三点合起来,则有3可推广到任意有限个相互独立的随机变量之积的情况:11()(),,1,2,,, n ni i i i i E X E X X i n ==∏=∏= 其中 相互独立.4. 设X , Y 是相互独立的两个随机变量, 则有()()();E XY E X E Y =4()().E X E Y =+1.()1,()()1.c P X c E c E X c c ====⨯=是常数,2. ()()()().X X E cX cx f x dx c xf x dx cE X +∞+∞-∞-∞===⎰⎰ 3. ()()(,) (,)(,)E X Y x y f x y dxdy xf x y dxdy yf x y dxdy+∞+∞-∞-∞+∞+∞+∞+∞-∞-∞-∞-∞+=+=+⎰⎰⎰⎰⎰⎰证明:((),(,)(,))X X f x X Y f x y ~~下面仅对连续型随机变量给予证明 设(利用随机变量函数的数学期望的两个定理来证)54. ()(,) ()() ()() ()().X Y X Y E XY xyf x y dxdyxyf x f y dxdyxf x dx yf y dyE X E Y +∞+∞-∞-∞+∞+∞-∞-∞+∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰数学期望的性质:1. 设c是常数, 则有();E c c=2. 设X是一个随机变量, c是常数, 则有()();E cX cE X=3. 设X, Y是两个随机变量, 则有()()();+=+E X Y E X E Y 将上面三点合起来,则有()()();++=++E aX bY c aE X bE Y c4. 设X, Y是相互独立的两个随机变量, 则有=E XY E X E Y()()().672~(,)().X N E X μσμ= 设 ,证明: 例1:, , (0.)X Z Z E Z μσ-==令 则服从标准正态分布且证明:()()()()()0.E X E Z E E Z E Z μσμσμσμσμ=+=+=+=+= 故 2(,) .N μσμ服从 的随机变量的期望为即,X Z μσ=+此时8~(,),01,1,().X B n p p n E X <<≥ 设 求 例2:,, (). X n A P A p =由题意知随机变量可看成是重贝努里试验中事件发生的次 解: 数此时 引入随机变量1,;1,2,,.0,,k A k X k n A k ⎧==⎨⎩ 在第次试验发生在第次试验不发生()()12 ,,,,01,(),, n k X X X p E X p k -=∀ 于是相互独立服从同一分布参数为 121.nn k k X X X X X ==+++=∑ 且 11()()(),n n k k k k E X E X E X np =====∑∑故 ,.() B n p np 服从 的随机变量的期望为即注: 以n , p 为参数的二项分布的随机变量,可分解为n 个相互独立且都服从以p 为参数的(0-1)分布的随机变量之和.9(),1,2,,,,1,2,,.,,,,().n n n X n E X 配对问题一个小班有个同学 编号为号 中秋节前每人准备一件礼物 相应编号为将所有礼物集中放在一起 然后每个同学随机取一件 若取到自己的礼物 就认为配对成功.以表示个同学配对成功的个数求 例3: 1, ;1,2,,.0,,i i X i n i ⎧==⎨⎩ 第号同学配对成功引入随机变量 第号同学未配对成功解:121,01,. n i X X X X X n=+++- 易知: 且服从分布参数为1111()()() 1.n n n i i i i i E X E X E X n=======∑∑∑故 X 注: 不服从二项分布!10,,.X 本题是将分解成数个随机变量之和 然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望 这种处理方法具有一定的普遍意义1110010010011()()() 4.5.i i i i E Y E X E X ===∏=∏=从而 0~9,100,,1,2,,100.100,,,().i X i i Y E Y = 计算机程序随机产生中的数字 独立进行次记为第次产生的数字将这个数进行乘积运算得到一数记为求 例4:12100,,,,,,{}1/10,0,1,,9.i X X X P X k k === 由题意知独立同分布其分布律均为 解:901() 4.5,10i k E X k ==⋅=∑故 100121001,i i Y X X X X ===∏ 又。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
5.数学期望的基本性质利用数学期望的定义可以证明,数学期望具有如下基本性质:设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则性质1.E(c)=c;性质2.E(aξ)=aE(ξ);性质3.E(a+ξ)=E(ξ)+a;性质4.E(aξ+b)=aE(ξ)+b;性质5. E(ξ+η)=E(ξ)+E(η).例3.5.7设随机变量X的概率分布为:P(X =k)=0.2 k =1,2,3,4,5.求E(X),E(3X+2).解. ∵P(X=k)=0.2 k=1,2,3,4,5∴由离散型随机变量的数学期望的定义可知E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3,E(3X+2)=3E(X)+2=11.例3.5.8. 设随机变量X的密度函数为:求E(X),E(2X-1).解.由连续型随机变量的数学期望的定义可知=-1/6+1/6=0.∴E(2X-1)=2E(X)-1=-1.我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.4.1.2 数学期望的性质(1)设是常数,则有。
证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。
所以,。
(2)设是随机变量,是常数,则有。
证若是连续型随机变量,且其密度函数为。
当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。
(3)设都是随机变量,则有。
此性质的证明可以直接利用定理4.1.2,我们留作课后练习。
这一性质可以推广到有限个随机变量之和的情况,即。
(4)设是相互独立的随机变量,则。
证仅就与都是连续型随机变量的情形来证明。
设的概率密度分别为和,的联合概率密度为,则因为与相互独立,所以有。
由此得此性质可以推广到有限个相互独立的随机变量之积的情况。
例4.1.2 倒扣多少分?李老师喜欢在考试中出选择题,但他知道有些学生即使不懂哪个是正确答案也会乱撞一通,随便选一个答案,以图侥幸。
《概率论与数理统计》第四章随机变量的数字特征数学期望:1.随机变量数学期望的定义—连续型E(ξ)=⎰-∞+∞xp(x)dx E(g(ξ))=⎰-∞+∞g(x)p(x)dx 2.二维随机变量(X,Y)的数学期望:连续型E(X)=⎰-∞+∞xf X (x)dx=⎰-∞+∞⎰-∞+∞xf(x,y)dxdy E(Y)=⎰-∞+∞yf Y (y)dy=⎰-∞+∞⎰-∞+∞yf(x,y)dxdy 3.二维随机变量X 的函数Y=g(X)的数学期望:E[g(X,Y)]=⎰-∞+∞⎰-∞+∞g(x,y)f(x,y)dxdy 4.数学期望的性质E(c)=c ,E(a ξ)=a ξ,E(ξ±η)=E ξ±E η若ξ与η相互独立,则E(ξη)=E ξE η方差:1.随机变量方差的定义−−-D(X)=E[X-E(X)]2=EX 2–(EX)2D(X)=⎰-∞+∞[x-E(X)]2f(x)dx 2.方差性质:D(c)=0,D(a ξ)=a 2ξ,D(a ξ+b)=a 2D ξ,D(ξ±η)=D ξ+D η±2cov(ξ,η)若ξ与η相互独立,则D(ξ±η)=D ξ+D η协方差:1.ξ与η的协方差cov(ξ,η)=E[(ξ-E ξ)(η-E η)](或为σξη)2.协方差的性质:cov(ξ,ξ)=D ξcov(ξ,η)=cov(η,ξ),cov(ξ,c)=0cov(a ξ,b η)=ab cov(ξ,η),cov(ξ,η±ζ)=cov(ξ,η)±cov(ξ,ζ)3.协方差矩阵:设n 维随机变量X 1,X 2,…,X n ,记c ij =cov(X i ,X j ),则称阶矩阵C=(c ij )n ⨯n 为X 1,X 2,…,X n 的协方差矩阵例1:设ξ的密度函数p(x)=2x ∈[1,3]其它求:E ξ[解]∵1=⎰-∞+∞p(x)dx ∴c=3/2;E ξ=⎰-∞+∞xp(x)dx=⎰13x 32x 2dx=32lnx=32ln3.例2设x 1,x 2是随机变量ξ的两个任意取值,证明:E[(ξ-x 1+x 22)2]≥D ξ。
南 昌 大 学4.1.2 随机变量的函数的数学期望及数学期望的性质一、随机变量的函数的数学期望在理论研究和实际应用中经常遇到求随机变量X的函数Y=g(X)的数学期望的问题,按定义应先求出Y=g(X)的分布,然后再利用Y的分布求E(Y),这样做显然比较麻烦。
是否可以不求g (X)的分布而只根据X的分布求得E[g(X)]呢?定理4.1:设 Y = g (X ) 为随机变量 X 的函数,其中 g 为连续的实函数。
1()[()]().k k k E Y E g X g xp +∞===∑ (2) X 是连续型随机变量,其概率密度为 f (x ),若积分∞∞∫()()-g x f x dx +绝对收敛,则有()[()]()().E Y E g X g x f x dx +∞-∞==⎰一、随机变量的函数的数学期望(1) X 是离散型随机变量,其分布律为(k =1,2,…), 若级数1()k k k g x p +∞=∑绝对收敛,则有()k k P X x p ==定理4.2:设 Z = g (X , Y )是二维随机变量 (X , Y ) 的函数,其中 g 为连续的实函数。
(1) 当 (X , Y ) 是二维离散型随机变量时,其分布律为 P ( X = x i , Y = y j ) = p ij , i , j =1,2,…,若级数11(,)i j ij j i g x y p +∞+∞==∑∑绝对收敛,则有11()[(,)](,).ij ij j i E Z E g X Y g x y p +∞+∞====∑∑一、随机变量的函数的数学期望()[(,)](,)(,).E Z E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰ (2) 当 (X , Y ) 是二维连续型随机变量时,其概率密度为 f ( x , y ),若积分 (,)(,)g x y f x y dxdy +∞+∞-∞-∞⎰⎰绝对收敛,则有例1:设随机变量 X 的分布律为求 E (-2X +1) 。
§ 2.4 数学期望的定义及性质我们已经知道离散型随机变量的分布全面地描述了这个随机变量的统计规律,但在许多实际总是中,这样的全面描述有时并不使人感到方便.举例来说,已知在一个同一品种的母鸡群中,一只母鸡的年产蛋量是一个随机变量,如果要比较两个品种母鸡的年产蛋量通只要比较这两个品种的母的年产蛋量的平均值就可以了。
平均值大就意味着这个品种的母鸡产蛋量高,当然是较好的品种,这时如果不去比较它们的平均值,而只看它们的分布列,虽然全面,去合人不得要领,既难以掌握,又难以迅速地作出判断.这样的例子可以举出很多:例如要比较不同班级的学习成绩,通常就比较考试中的平均成绩;要比较不同地区的粮食收成,一般也只要比较平均亩产量等.既然平均值这么有用,那是值得花力气来研究一番的.例 2.13 (略) 见P 79例 2.14 若随机变量ξ服从二项分布),;(p n k b ,试求它的数学期望ξE 解 这时n k q p k n k P P kn k k ≤≤⎥⎦⎤⎢⎣⎡===-0,)(ξ所以k n k nk nk k q p k n k P k E -==⎥⎦⎤⎢⎣⎡⋅=⋅=∑∑00ξ)1()1(1011----=∑⎥⎦⎤⎢⎣⎡--=k n k nk q p k n nP np q p nP n =+=-1)( (2.22)例 2.15 (略)P 80定义 2.5 若离散型随机变量ξ可能取值为),,2,1(Λ=i a i 其分布列为),,2,1(Λ=i P i 则当∞<∑∞=1||i i ip a(2.24)时,称ξ存在数学期望,并且数学期望为∑∞==1i i i p a E ξ (2.25)如果∞=∑=i i ip a||1则称ξ的数学期望不存在.对于这个定义,读者也许会问,既然数学期望∑==1i ii pa E ξ,那么只要∑∞=1i ii pa 收剑就可以了,为什么还要求∞<∑∞=1||i i ip a是不是有点多余?我们已经知道,离散型随机变量的取值是可依某种次序一一列举的,对同一个随机变量,它的取值的列举次序可以有所不同,当改变列举次序时它的数学期望是不应该改变的,这就意味着无穷级数∑∞=1i ii pa 的求和次序可以改变而其和要保持不变,由无穷级数的理论知道,必须有∑∞=1i ii pa 绝对收剑即∞<∑∞=1||i i ip a,才能保证它的和不受求和次序变动的影响.定理 2.2 若ξ是一个离散型随机变量,其分布列为又g(x)是实变量x 的单值函数,如果∞<∑∞=1||i i ip a,则有∑∞==0)()(i i i p a g Eg ξ (2.26)证明 令),(ξηg =则η仍是一个离散型随机变量,设其可能取的值为)2,1(Λ=j b j ,于是由(2.20)式有∑====ji b a g ij a P b P )()()(ξη由数学期望定义有∑∞====1)()(j i j b p b E Eg ηηξ∑∑=∞===ji b a g ij ja pb )(1)(ξ∑∑=∞===ji b a g iij a p a g )(1)()(ξ∑∞==⋅=1)()(i i i a p a g ξ即为所证类似还可以证下述定理.定理 2.3 若(ξ,η)是一个二维离散型随机变量,其联合分布列为Λ2,1,,),(====j i p b a p ij j i ηξ又),(y x g 是实变量x,y 的单值函数,如果∞<∑∑∞=∞=11|),(|i j ijjipb a g则有∑∑∞=∞==11),(),(i j ij j i p b a g Eg ηξ (2.27)对一般的n 维随变量的函数,也有相应的定理成立,这里就不再叙述了.由于这些定理,在求离散型随机变量函数的数学期望时,就可以直接利用原来随机变量的分布,而不必先求随机变量函数的分布列.现在进一步讨论数学期望的性质.随机变量的数学期望具有下述基本性质:(1) 若b a ≤≤ξ,则ξE 存在,且有b E a ≤≤ξ.特别,若C 是一个常数,则EC=C. (2) 对于一二维离散型随机变量(ξ,η),若ξE ,ηE 存在,则对任意的实数),(,,2121ηξk k E k k 存在且ξξηξE k E k k k E 2121)(+=+ (2.28)(3) 又若ξ,η是相互独立的,则ξηE 存在且ηξξηE E E ⋅=)( (2.29)性质(1)的证明是显然的,下面证明性质(2)和(3). 设(ξ,η)的联合分布列和边际分布列为:Λ,,,),(j i p b a P ij j i ===ηξΛ2,1,)(===⋅i P a P i i ξ Λ2,1,)(===⋅j P b P j j η由定理2.32有∑∑∞=∞=+=+112121)()(i j ij j i P b k a k k k E ηξ∑∑∑∑∞=∞=∞=∞=+=112111i j ij j i j ij i p b k p a k∑∑∞=⋅∞=⋅+=1211j j j i i i p b k p a kηξE k E k 21+=这里级数∑∑∞=∞=+1121)(i j ij j ip b k ak 绝对收剑是明显的,所以)(21ηξk k E +存在且(2.28)式成立,性质(2)证得.仍得用定理2.3并由独立性有ηξξηE E p b p a p b a E j j j i i i i j ij j i •=•==∑∑∑∑∞=⋅∞=⋅∞=∞=1111)(这里级数∑∑∞=∞=11i j ij jip ba 的绝对收剑也是显然的,所以ξηE 存在且(2.28)式成立,性质(3)得证.性质(2)和(3)都可以推广到任意n 维随机变量的场合,当然,就性质(3)来说,要求这n 维随机变量是相互独立的.一个随机变量η,如果它的分布列是0---1分布:⎥⎦⎤⎢⎣⎡-p p 110 则显然有ηE =⋅P例 2.14 (略)见P 87。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
高考数学期望知识点数学作为高考的一门基础学科,在社会发展的过程中扮演着重要的角色。
而其中的数学期望概念,更是每个高中学生必须掌握的知识点之一。
本文将从不同角度对高考数学期望知识点展开深入的探讨,希望对广大考生有所帮助。
1. 数学期望的定义数学期望是统计学中的一个重要概念,用来描述一组数据的平均值。
在高考数学中,期望值通常用符号E(X)表示,其中X是随机变量。
数学期望的计算方法根据不同的随机变量类型而异,比如离散型随机变量和连续型随机变量。
对于离散型随机变量,期望可以通过每个事件发生的概率乘以对应的取值,再求和来计算;对于连续型随机变量,期望可以通过概率密度函数进行积分求解。
2. 数学期望的应用数学期望在实际生活中有着广泛的应用。
以购买彩票为例,假设一张彩票中奖的概率为p,中奖金额为x,不中奖的金额为y。
那么购买一张彩票的期望收益可以表示为(1-p)y+px,其中(1-p)y为不中奖的期望收益,px为中奖的期望收益。
通过计算这个期望值,可以帮助人们做出更明智的决策。
在金融领域,数学期望也扮演着重要的角色。
例如,在投资理财中,人们可以通过计算不同投资方案的期望收益来评估风险和回报。
通过对期望收益的比较,可以选择最合适的投资组合,以达到最佳的资产配置目标。
3. 数学期望的性质数学期望具有一些特殊的性质,这些性质在高考中也经常被考察。
其中,最重要的性质是线性性质。
即期望运算对于常数的线性性质,对于随机变量X,Y和常数a,b,有E(aX+bY) = aE(X) +bE(Y)。
这个性质使得计算复杂随机变量的期望值变得相对简单。
另外,数学期望还具有一个重要的性质,即保序性。
对于两个随机变量X和Y,如果对于任意的实数x,有P(X≤x) ≤ P(Y≤x),那么有E(X) ≤ E(Y)。
这个性质直观地表明了数学期望可以用于比较不同随机变量的概率分布。
4. 高考数学期望题型在高考数学中,期望作为一个重要的考察点,经常出现在各种题型中。
数学期望和方差公式数学期望和方差是概率论和统计学中重要的概念,在许多领域中有广泛的应用。
它们是度量随机变量分布的指标,可以帮助我们了解随机现象的平均值和离散程度。
本文将详细介绍数学期望和方差的定义、性质以及计算公式。
一、数学期望数学期望,也称为均值或平均值,是衡量随机变量平均值的指标。
对于离散型随机变量X,它的数学期望E(X)的定义如下:E(X) = Σx * P(X = x)其中,x代表随机变量X可能取到的值,P(X = x)表示随机变量取到x的概率。
对于连续型随机变量X,它的数学期望E(X)的定义如下:E(X) = ∫x * f(x) dx其中,f(x)表示X的概率密度函数。
数学期望具有以下性质:1. 线性性质:对于任意实数a和b,以及任意两个随机变量X和Y,有E(aX + bY) = aE(X) + bE(Y)。
2. 递推性质:对于离散型随机变量X,可以通过递推公式E(X) = Σx * P(X = x)来计算。
3. 位置不变性:对于随机变量X和常数c,有E(X + c) = E(X) + c。
数学期望的计算公式可以帮助我们求解随机变量的平均值,进而了解随机现象的集中程度。
二、方差方差是衡量随机变量取值的离散程度的指标,它表示随机变量与其均值之间的差异程度。
对于离散型随机变量X,其方差Var(X)的定义如下:Var(X) = Σ(x - E(X))^2 * P(X = x)对于连续型随机变量X,其方差Var(X)的定义如下:Var(X) = ∫(x - E(X))^2 * f(x) dx方差具有以下性质:1. 线性性质:对于任意实数a和b,以及任意随机变量X和Y,有Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y)。
2. 位置不变性:对于随机变量X和常数c,有Var(X + c) = Var(X)。
3. 零偏性:Var(X) >= 0,当且仅当X是一个常数时,等号成立。