高考数学2.3 连续型随机变量的数学期望与方差
- 格式:ppt
- 大小:1.13 MB
- 文档页数:21
《概率论与数理统计》笔记一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象➢确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.➢随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.➢统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●应用例子➢摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.➢ 戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。
本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。
一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。
通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。
2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。
这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。
二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。
通过对概率密度函数乘以x后再积分,即可得到期望值。
2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。
这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。
三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法【例1】 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX.解析:由于离散型随机变量的分布列满足 (1)p i ≥0,i=1,2,3,...; (2)p 1+p 2+...+p n + (1)故⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+112101)21(2122q q q q 解得 q=1-22 故X 的分布列为∴EX=(-1)×2+0×(2-1)+1×(22-)=-2321++(-2)=1-2 DX=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX=(-1)×21+0×(1-2q)+1×q 2=q 2-21; DX=[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q)+[1-(q 2-21)]2×q 2这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差【例2】 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值.思路分析:根据题意,可知本题主要考查服从二项分布的随机变量的标准差公式,所以解本题的关键就是找出几个变量之间的关系.解:设成功次数为随机变量X ,由题意可知X —B (100,p ),那么σX=)1(100p p DX -=,因为DX=100p(1-p)=100p-100p 2(0≤p≤1)把上式看作一个以p 为自变量的一元二次函数,易知当p=21时,DX 有最大值25.所以DX 的最大值为5,即当p=21时,成功次数的标准差的最大值为5. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p 的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1. 三、方差的应用【例3】 海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s ),根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量. 解:∵EX 1=0,EX 2=0 ∴EX 1=EX 2∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2 ∴DX 1<DX 2由上可知,A 面大钟的质量较好. 温馨提示随机变量X 的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX 则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X 1、X 2,且EX 1=EX 2或EX 1与EX 2比较接近时,我们常用DX 1与DX 2来比较这两个随机变量,方差值大的,则表明X 较为离散,反之则表明X 较为集中.同样,标准差的值较大,则标明X 与其均值的偏差较大,反之,则表明X 与其均值的偏差较小. 各个击破【类题演练1】若随机事件A 在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.解析:由题意得ξ的分布列为∴Eξ=0×(1-2a)+1×2a=2a∴Dξ=(0-2a)2(1-2a)+(1-2a)22a =(1-2a)2a(2a+1-2a) =2a(1-2a)=-4[a-41]2+41 由分布列的性质得0≤1-2a≤1 且0≤2a≤1 ∴0≤a≤21∴当a=41时Dξ最大值为41; 当a=0或21时Dξ的最小值为0.【变式提升1】某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).解析:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为 P (ξ=1)=0.8ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16;ξ=3,表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中,故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中,4Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.0064+(5-1.25)2×0.001 6=0.31.【类题演练2】若随机变量A 在一次试验中发生的概率为p(0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值. 解析:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p)+1×p=p,Dξ=(0-p)2×(1-p)+(1-p)2×p=p -p 2. (1)Dξ=p -p 2=-(p-21)2+41,∵0<p <1, ∴当p=21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p+p1≥22. 当且仅当2p=p1,即p=22时,ξξE D 12-取得最大值2-22.【变式提升2】证明:事件在一次实验中发生的次数的方差不超过14.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p,P(ξ=1)=p,Eξ=0×(1-p)+1×p=p,Dξ=(1-p)·(0-p)2+p(1-p)2= p(1-p)≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 【类题演练3】甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣. 解析:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).D ξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5.D η=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24.所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 【变式提升3】现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下乙根据以上条件,选派谁去合适?解析:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称______________________为离散型随机变量X 的数学期望,记为______,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=L2.离散型随机变量X 的方差一般地,若离散型随机变量X 的概率分布如下表所示,则称____________________________________为离散型随机变量X 的方差,记为_________,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=L ()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=_____________4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=____________________________;V (X )=_____________________________________________; σ=______________.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=_____(k 为常数); (2)()_________;V k ξ= (3)()V k ξ+=___________;(4)()___________(,).V a b a b ξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以____为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越________;σ越小,正态曲线越________. (4)在正态曲线下方和x 轴上方范围内的区域面积为_____.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0B.-1C.13-D.12-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示) 类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:求V (X ).练习1:甲、乙两名射手在同一条件下进行射击,分布表如下: 射手甲:射手乙:类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3B.6,0.4C.2,0.2D.5,0.6练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. 类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表;(2)设η为这个人的途中遇到红灯的次数,求η的期望和方差;(3)求这个人首次停止前已经过两个交通岗的概率.练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x 轴上方且与x 轴不相交;②当x >μ时,曲线下降;当x <μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x =μ对称,且当x =μ时,位于最高点.其中正确的是( )A.1个B.2个C.3个D.4个练习6:若2(1)2(),x f x x R --=∈,则下列判断正确的是( )A .f (x )有最大值,也有最小值B .f (x )有最大值,无最小值C .f (x )无最大值,有最小值D .f (x )无最大值,也无最小值 类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.9751.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6B .1.2C .1.3D .0.82.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0B.12C.13D.233.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5 C .1 D .不确定5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.56.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______.7.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.953.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+D.34,32E E D D ηξηξ=+=+4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125 B.116 C.87D.23 5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______.6.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.7.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.8.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( )A .0.0729B .0.00856C .0.91854D .0.991442.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4003.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.4.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.5.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.。
随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。
一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。
数学期望可以理解为长期重复试验中,随机变量取值的平均结果。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。
对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。
二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。
方差描述的是随机变量取值与其数学期望之间的偏离情况。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。
对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。
三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。
假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。
我们可以定义骰子的随机变量X表示投掷后骰子的结果。
1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。
2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
期望值和方差的公式一、期望值概念:期望值是随机变量取值与其概率的加权平均,用来表示随机变量的平均取值。
1.离散型随机变量的期望值:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的期望值E(X)定义为:E(X) = x1*p1 + x2*p2 + ... + xn*pn2.连续型随机变量的期望值:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的期望值E(X)定义为:E(X) = ∫xf(x)dx性质:1.期望值的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:E(aX+bY)=aE(X)+bE(Y)2.期望值的保序性:如果随机变量X的取值总是大于等于随机变量Y的取值,则有:E(X)≥E(Y)二、方差概念:方差是用来度量随机变量与其期望值之间的偏离程度或波动程度。
1.离散型随机变量的方差:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = (x1 - E(X))^2*p1 + (x2 -E(X))^2*p2 + ... + (xn - E(X))^2*pn2.连续型随机变量的方差:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = ∫(x - E(X))^2f(x)dx性质:1.方差的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:Var(aX + bY) = a^2Var(X) + b^2Var(Y)2.方差的非负性:对于任意的随机变量X,有:Var(X) ≥ 03.方差的可加性:对于独立随机变量X和Y,有:Var(X + Y) = Var(X) + Var(Y)三、期望值和方差的计算公式1.对离散型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = x1*p1 + x2*p2 + ... + xn*pn(2)方差:Var(X) = (x1 - E(X))^2*p1 + (x2 - E(X))^2*p2 + ... + (xn -E(X))^2*pn2.对连续型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = ∫xf(x)dx(2)方差:Var(X) = ∫(x - E(X))^2f(x)dx总结:期望值和方差是概率论中重要的概念,用于描述随机变量的分布特征。
人教版高中数学 数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称1122n n x p x p x p +++为离散型随机变量X 的数学期望,记为()E X ,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=一般地,若离散型随机变量X 的概率分布如下表所示,则称2221122()()()n n x p x p x p μμμ-+-++-为离散型随机变量X 的方差,记为()V X ,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=1122n n x p x p x p +++;V (X )=221122()()x p x p μμ-+-+2()n n x p μ+-;σ=.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=0(k 为常数); (2)2();V k k V ξξ= (3)();V k V ξξ+=(4)2()(,).V a b a V a b ξξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以x 轴为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡. (4)在正态曲线下方和x 轴上方范围内的区域面积为1.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0 B.-1C.13-D.12-[答案] C[解析] 由111()(1)01236E X =-⨯+⨯+⨯=1.3-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示)[答案]47[解析] ξ可取0,1,2,因此252710(0),(1)21C P P C ξξ=====11522710,21C C C = 22271101014(2),012.212121217C P E C ξξ====⨯+⨯+⨯=类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:[解析] 因为E (X )=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以22()(0 2.5)0.1(1 2.5)0.15(2V X =-⨯+-⨯+-222.5)0.25(3 2.5)0.25⨯+-⨯+2(4 2.5)0.15(5-⨯+-22.5)0.1 2.05.⨯=练习1:甲、乙两名射手在同一条件下进行射击,分布表如下:射手乙:谁的射击水平比较稳定.[解析] 1()100.290.680.29,E X =⨯+⨯+⨯=2221()(109)0.2(99)0.6(89)0.2V X =-⨯+-⨯+-⨯0.20.20.4,=+= 2()100.490.280.49,E X =⨯+⨯+⨯=2222()(109)0.4(99)0.2(89)0.40.8V X =-⨯+-⨯+-⨯=,因为12()(),V X V X <所以射手甲的射击水平比较稳定.类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3 B.6,0.4 C.2,0.2 D.5,0.6[答案] B[解析] 由np =2.4,np (1-p )=1.44,解得n =6,p =0.4.练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [解析]13,,7E nP P ξ===13721,(1)217n D nP P ξ∴=⨯==-=⨯118(1).77-=类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3 [答案] A[解析] 答对题数为,ξ成绩为4.ξ先分析ξξ⋅~B (25,0.8),所以E ξ=25×0.8=20,所以(4)480,E E V ξξξ===25×0.8×0.2=4,所以(4)V ξ=2464,V ξ=8.=练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1[答案] A [解析] 11111012363E ξ=-⨯+⨯+⨯=-,17(23)232333E E E ηξξ=+=+=-⨯+= 类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表; (2)设η为这个人的途中遇到红灯的次数,求η的期望和方差; (3)求这个人首次停止前已经过两个交通岗的概率. [解析] (1)ξ的取值为0,1,2,3,4,5,6,212121(0),(1),(2)(),33333P P P ξξξ====⨯==⨯342121(3)(),(4)(),(5)3333P P P ξξξ==⨯==⨯==56212(),(6)().333P ξ⨯==所以ξ的分布表如下:(2)由题意知:1~(6,),3Bη则162,(13E V npηη=⨯==114)6(1).333p-=⨯⨯-=(3)由(1)知4 (2).27 Pξ==练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.[解析]若该运动员投篮1次,则P(ξ=1)=0.6;若投篮2次,则说明他第1次没有投进,而第2次投进,P(ξ=2)=0.4×0.6=0.24;若投篮3次,则说明他前2次没有投进,而第3次投进,P(ξ=3)=0.42×0.6;若投篮4次,则说明他前3次没有投进,而第4次投进,P(ξ=4)=0.43×0.6;若投篮5次,则说明他前4次没有投进,而第5次投进与否均可,所以概率为P(ξ=5)=0.44×1.所以ξ的概率分布为:所以,投篮次数的数学期望为Eξ=1×0.6+2×0.24+3×0.096+4×0.0384+5×0.0256=1.6496.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的是()A.1个B.2个C.3个D.4个[答案] C[解析]①、②、④都正确,③不正确,应该是当μ一定时,σ越小,总体分布越集中,σ越大,总体分布越分散.练习6:若2(1)2(),xf x x R--=∈,则下列判断正确的是()A.f(x)有最大值,也有最小值B.f(x)有最大值,无最小值C.f(x)无最大值,有最小值D.f(x)无最大值,也无最小值[答案]B[解析]这个函数就是正态分布N(1,1)的概率密度函数.类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.[答案]1[解析]区间(-3,-1)与(3,5)的长度相等,这说明正态曲线在两个区间上对称,易知两区间关于x=1对称,所以正态分布的数学期望是1.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.975[答案] C[解析] 由( 1.96)1(1.96)0.025Φ-=-Φ=,得(1.96)0.975Φ=,(|| 1.96)(1.96)( 1.96)0.9750.025P ξ<=Φ-Φ-=-=0.951.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6 B .1.2C .1.3D .0.8[答案] B2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0 B.12C.13D.23[答案] C3.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定[答案] B4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5C .1D .不确定[答案] B5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.5 [答案] B6.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______. [答案]237.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望. [答案] (1)因为抽取比例为311,102,510555=⨯=⨯+由115=得,应在甲组抽取2人,在乙组抽取1人.(2)从甲组抽取的工人中恰有1名女工人的概率11462108.15C C P C ⋅== (3)ξ的可能取值为0,1,2,31234211056(0),75C C P C C ξ==⋅=1112146342212110510528(1),75C C C C C P C C C C ξ==⋅+⋅=21622110510(3),75C C P C C ξ==⋅=31(2)1(0)(1)(3).75P P P P ξξξξ==-=-=-==分布列如下表:数学期望282810123 1.6.757575E ξ=⨯+⨯+⨯= 8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望. [答案] 依题意知,比赛场数ξ的取值为4,5,6,7.411(4)2,28P ξ∴==⨯=3341112(5)()2,2228P C ξ==⋅⨯⨯⨯= 33251115(6)()()2,22216P C ξ==⋅⋅⨯⨯=33361115(7)()()2.23216P C ξ==⋅⋅⨯⨯=从而随机变量ξ的分布列为:∴随机变量专的数学期望为1255934567.88161616E ξ=⨯+⨯+⨯+⨯=__________________________________________________________________________________________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定[答案] B2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.95[答案] B3.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+ D.34,32E E D D ηξηξ=+=+[答案] A4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125B.116 C.87D.23[答案] B5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [答案] 1821;76.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.[答案] 0.87.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.[答案] 258.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. [答案] (1)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=.(2)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=(1)()()()P X P ABC P ABC P ABC ==++2221321232035535535575=⨯⨯+⨯⨯+⨯⨯=.(2)()()()P X P ABC P ABC P ABC ==++2322231333335535535575=⨯⨯+⨯⨯+⨯⨯=.23318(3)()35575P X P ABC ===⨯⨯=.X 为分布列为:4()0123757575757515E X =⨯+⨯+⨯+⨯==.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( ) A .0.0729 B .0.00856 C .0.91854 D .0.99144[答案] D2.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B3.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.[答案] 0.34.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.[答案]545.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.[答案]12n + 6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.[答案] (1)1315(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=13×25=215,P (X =100)=13×35=315,P (X =120)=23×25=415,P (X =220)=23×35=615.故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615300480132021001401515++===. 7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.11[答案] (1)107; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B , 于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()P X C ===,3303141(3)()()125P X C ===,故X 的分布列为 X 的数学期望为()355E X =⨯=. 8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.[答案] (1)设“选出的3名同学来自互不相同的学院”为事件A ,则()120337373104960C C C C P A C ??==.所以,选出的3名同学来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.()346310k k C C P x k C -×==()0,1,2,3k =. 所以,随机变量X 的分布列是随机变量X 的数学期望()12362103050E X ??=+??.。