数学期望及其性质
- 格式:ppt
- 大小:461.50 KB
- 文档页数:15
第29讲数学期望的性质2数学期望的性质:可推广到任意有限个随机变量线性组合的情况:0011()().n ni i i i i i E c c X c c E X ==+=+∑∑1. 设c 是常数, 则有();E c c =2. 设X 是一个随机变量, c 是常数, 则有()();E cX cE X =3. 设X, Y 是两个随机变量, 则有()()();E X Y E X E Y +=+()()();E aX bY c aE X bE Y c ++=++将上面三点合起来,则有3可推广到任意有限个相互独立的随机变量之积的情况:11()(),,1,2,,, n ni i i i i E X E X X i n ==∏=∏= 其中 相互独立.4. 设X , Y 是相互独立的两个随机变量, 则有()()();E XY E X E Y =4()().E X E Y =+1.()1,()()1.c P X c E c E X c c ====⨯=是常数,2. ()()()().X X E cX cx f x dx c xf x dx cE X +∞+∞-∞-∞===⎰⎰ 3. ()()(,) (,)(,)E X Y x y f x y dxdy xf x y dxdy yf x y dxdy+∞+∞-∞-∞+∞+∞+∞+∞-∞-∞-∞-∞+=+=+⎰⎰⎰⎰⎰⎰证明:((),(,)(,))X X f x X Y f x y ~~下面仅对连续型随机变量给予证明 设(利用随机变量函数的数学期望的两个定理来证)54. ()(,) ()() ()() ()().X Y X Y E XY xyf x y dxdyxyf x f y dxdyxf x dx yf y dyE X E Y +∞+∞-∞-∞+∞+∞-∞-∞+∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰数学期望的性质:1. 设c是常数, 则有();E c c=2. 设X是一个随机变量, c是常数, 则有()();E cX cE X=3. 设X, Y是两个随机变量, 则有()()();+=+E X Y E X E Y 将上面三点合起来,则有()()();++=++E aX bY c aE X bE Y c4. 设X, Y是相互独立的两个随机变量, 则有=E XY E X E Y()()().672~(,)().X N E X μσμ= 设 ,证明: 例1:, , (0.)X Z Z E Z μσ-==令 则服从标准正态分布且证明:()()()()()0.E X E Z E E Z E Z μσμσμσμσμ=+=+=+=+= 故 2(,) .N μσμ服从 的随机变量的期望为即,X Z μσ=+此时8~(,),01,1,().X B n p p n E X <<≥ 设 求 例2:,, (). X n A P A p =由题意知随机变量可看成是重贝努里试验中事件发生的次 解: 数此时 引入随机变量1,;1,2,,.0,,k A k X k n A k ⎧==⎨⎩ 在第次试验发生在第次试验不发生()()12 ,,,,01,(),, n k X X X p E X p k -=∀ 于是相互独立服从同一分布参数为 121.nn k k X X X X X ==+++=∑ 且 11()()(),n n k k k k E X E X E X np =====∑∑故 ,.() B n p np 服从 的随机变量的期望为即注: 以n , p 为参数的二项分布的随机变量,可分解为n 个相互独立且都服从以p 为参数的(0-1)分布的随机变量之和.9(),1,2,,,,1,2,,.,,,,().n n n X n E X 配对问题一个小班有个同学 编号为号 中秋节前每人准备一件礼物 相应编号为将所有礼物集中放在一起 然后每个同学随机取一件 若取到自己的礼物 就认为配对成功.以表示个同学配对成功的个数求 例3: 1, ;1,2,,.0,,i i X i n i ⎧==⎨⎩ 第号同学配对成功引入随机变量 第号同学未配对成功解:121,01,. n i X X X X X n=+++- 易知: 且服从分布参数为1111()()() 1.n n n i i i i i E X E X E X n=======∑∑∑故 X 注: 不服从二项分布!10,,.X 本题是将分解成数个随机变量之和 然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望 这种处理方法具有一定的普遍意义1110010010011()()() 4.5.i i i i E Y E X E X ===∏=∏=从而 0~9,100,,1,2,,100.100,,,().i X i i Y E Y = 计算机程序随机产生中的数字 独立进行次记为第次产生的数字将这个数进行乘积运算得到一数记为求 例4:12100,,,,,,{}1/10,0,1,,9.i X X X P X k k === 由题意知独立同分布其分布律均为 解:901() 4.5,10i k E X k ==⋅=∑故 100121001,i i Y X X X X ===∏ 又。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
期望和期望的性质1. 若E[X]和E[Y]均有限,在(X,Y)连续的情况下:E[X+Y]=E[X]+E[Y]E[X1+X2+...X n]=E[X1]+E[X2]+...+E[X n](上式不要求X,Y独⽴)2. 若X,Y具有⼆元分布列p(x,y),那么:E[g(X,Y)]=∑∑g(x,y)p(x,y)若X,Y具有联合分布密度,那么:E[g(X,Y)]=∫∫g(x,y)f(x,y)dxdy3. 若X,Y独⽴,那么:E[X1X2...X n]=E[X1]E[X2]...E[X n]4. 样本均值的期望等于其分布的均值。
5. 若X,Y独⽴,那么:E[g(X)h(Y)]=E[g(X)]E[h(Y)]6. 协⽅差Cov(X,Y)=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y]7. 若X1,...X n两两独⽴,那么Var(∑X i)=∑Var(X i)即,独⽴随机变量和的⽅差等于他们⽅差的和。
8. 两个随机变量X,Y的相关系数ρ=Cov(X,Y)/sqrt(Var(X)·Var(Y))相关系数是两个随机变量间线性依赖程度的⼀种度量。
-1≤ρ≤1ρ接近0,表⽰两者缺乏线性依赖性。
ρ=0,X,Y不相关。
ρ取正值,X增加时Y趋于增加;ρ取负值,X增加时Y趋于下降。
9. 浙江⼤学,概率论与数理统计,数学期望,产品产量、销售量与利润期望的问题:销售量Y是个随机变量,产品产量x是⼀个待求的⾮随机变量。
如果把这两者画在数轴上,Y的位置是随机游动的。
根据Y与x的相对位置,利润有不同的表达式(Y在x左侧,产品有积压;Y在x右侧,产品⽆积压)。
这样将期望表达式的积分区间分为[0,x]和[y,+∞]。
一、数学期望的性质1.设C 是常数,则E (C )=C ;4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X );3.E (X +Y )=E (X )+E (Y );注意:由E (XY )=E (X )E (Y )不一定能推出X 、Y 独立推广(诸X i 相互独立)推广11[]()n n i i i i E X E X ===∑∑11[]()n n i i i i E X E X ===∏∏例1 性质 4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定独立X Y p ij-1 0 1-1118181818181818180p • j 383828p i•383828()()0;E X E Y ==()0;E XY =()()()E XY E X E Y =1(1,1)8P X Y =-=-=23(1)(1)8P X P Y ⎛⎫≠=-=-= ⎪⎝⎭5.若X ≥0,且EX 存在,则EX ≥0.推论:若X ≤Y ,则EX ≤EY .证明:设X 为连续型随机变量,密度函数为f (x ),则由X ≥0得:所以证明:∵Y −X ≥ 0,E (Y −X )≥0又∵E (Y −X )=E (Y )−E (X ) E (X ) ≤E (Y ).()0,0f x x =<0()()0EX xf x dx xf x dx +∞+∞-∞==≥⎰⎰例1.(二项分布B(n,p)) 设单次实验成功的概率是p ,问n 次独立重复试验中,成功次数X 的期望?解: 引入1,0,i i X i ⎧⎪=⎨⎪⎩第次试验成功,第次试验不成功。
则X =X 1+X 2+⋯+X n 是n 次试验中的成功次数。
因此,这里,X ~B(n,p).1()n i i EX E X ==∑1(1)ni i P X ===∑np=本题是将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.为普查某种疾病,n 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验n 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设:每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例2.二、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.设:第i 组需化验的次数为X i ,则其分布律为Xi1 k +1 P(1−p )k 1− (1−p )k ()1(1)(1)[1(1)]k k i E X p k p =⨯-++⨯--(1)(1)kk k p =+--解:为简单计,不妨设n 是k 的倍数,共分成j =n /k 组.(2)分组化验.每k 个人为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,此时k 个人的血需化验k+1次.每个人血液化验呈阳性的概率为p .若则E (X ) < n ,即方案2优于方案1方案2:需要化验的总次数为如:n =1000, p =0.001, k =10()(1)(1)k i E X k k p =+--1()()j i i E X E X ==∑12j X X X X =+++[(1)(1)]k n k k p k =+--1[1((1))]k n p k =---1(1)0,k p k-->101()1000[1(0.999)]1101000.10E X =--≈<<例3.据统计65岁的人在10年内正常死亡的概率为0.98,因事故死亡概率为0.02.保险公司开办老人事故死亡保险,参加者需交纳保险费100元.若10年内因事故死亡公司赔偿a元,应如何定a,才能使公司可期望获益;若有1000人投保,公司期望总获益多少?表示保险公司从第i个投保者身上所得的收益,i=1,2, (1000)解:设Xi则其分布律为:X i100 100−aP0.98 0.02)=100×0.98+(100−a)×0.02= 100−0.02a>0易求得E(XiE (X i )=100−0.02a >0即:当100<a<5000时,公司可期望获益若1000人投保,期望总收益为1000100011()()10000020i ii i E X E X a ====-∑∑例4.市场上对某种产品每年需求量为X 吨,X ~U [2000,4000],每出售一吨可赚3万元;售不出去,则每吨需仓库保管费1万元,问应该生产这种商品多少吨,才能使平均利润最大?解:设每年生产y 吨,其利润为Y .则易知,2000<y <4000,且有易知,需求量X 的密度函数为1,20004000()20000,X x f x ⎧<<⎪=⎨⎪⎩其它3,()3()1,y y X Y g X X y X y X ≤⎧==⎨--⋅>⎩3,4,y y X X y y X≤⎧=⎨->⎩3,()4,y y X Y g X X y y X ≤⎧==⎨->⎩3,()4,y y x g x x y y x ≤⎧=⎨->⎩()()()X E Y g x f x dx +∞-∞=⎰400020001()2000g xdx =⎰261(214000810)2000y y =-+-⨯4000200011()()20002000y y g x dx g x dx =+⎰⎰4000200011(4)320002000y y x y dx y dx =-+⎰⎰即:当y=3500时,E (Y )最大,最大值为8250万元.解得:y=3500()1(414000)2000dE Y y dy =-+0=令261()(214000810)2000E Y y y =-+-⨯。
随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)), (-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。
§2.4数学期望的定义与性质一. 数学期望的定义数学期望——描述随机变量取值的平均特征定义1:若X ~P{X=x k }=p k ,k=1,2,…n,则称 knk kp xEX ∑==1为r.v.X 的数学期望,简称期望或均值。
定义2.(p81)若X ~P{X=x k }=p k ,k=1,2,…,且∞<∑=k nk k p x 1则称 kk kp xEX ∑∞==1为r.v.X 的数学期望。
二、几个重要r.v.的期望1.0-1分布的数学期望:⎪⎪⎭⎫⎝⎛-p p 110P EX =⇒2.二项分布B(n,p)3.普哇松分布三、随机变量函数的期望定理2.2:若X ~P{X=x k }=p k ,k=1,2,…,则Y=g(X)的期望E(g(X))为(p84)定理2.3:若(X,Y)~P{X=x i ,Y=y j,}=p ij ,i,j=1,2,…,则Z=g(X ,Y)的期望例5:设随机变量(X,Y)的分布列如下,求E(XY)。
nk p p C k X P kn kkn ,...1.0)1(}{=-==-np p p k n k n k X E n k kn k =--=∑=-1)1()!(!!)(...,2,1,0,!}{~===-k e k k X P X kλλ∑∑∞=∞=---=-==11;)!1(!)(k k k kk eek kX E λλλλλλ.)()]([)(1k k kp xg X g E Y E ∑∞===.),()],([)(11ij i j ij p y xg Y X g E Z E ∑∑∞=∞===四.数学期望的性质1.E(c)=c,c 为常数;2.E(aX+bY)=aE(X)+bE(Y),a,b 为常数;3.若X 与Y 独立,则E(XY)=E(X)E(Y)。
例6:若X ~B(n,p),求E(X)。
解:设=)(XY E 解:15.010⨯⨯15.020⨯⨯+45.011⨯⨯+25.021⨯⨯+95.0=⎩⎨⎧=不出现时试验事件当第次出现时试验事件当第次A i A i X i 01p X E i =)(则∑==ni iX X 1∑==n i iXE X E 1)()(npp ni ==∑=1。
§ 2.4 数学期望的定义及性质我们已经知道离散型随机变量的分布全面地描述了这个随机变量的统计规律,但在许多实际总是中,这样的全面描述有时并不使人感到方便.举例来说,已知在一个同一品种的母鸡群中,一只母鸡的年产蛋量是一个随机变量,如果要比较两个品种母鸡的年产蛋量通只要比较这两个品种的母的年产蛋量的平均值就可以了。
平均值大就意味着这个品种的母鸡产蛋量高,当然是较好的品种,这时如果不去比较它们的平均值,而只看它们的分布列,虽然全面,去合人不得要领,既难以掌握,又难以迅速地作出判断.这样的例子可以举出很多:例如要比较不同班级的学习成绩,通常就比较考试中的平均成绩;要比较不同地区的粮食收成,一般也只要比较平均亩产量等.既然平均值这么有用,那是值得花力气来研究一番的.例 2.13 (略) 见P 79例 2.14 若随机变量ξ服从二项分布),;(p n k b ,试求它的数学期望ξE 解 这时n k q p k n k P P kn k k ≤≤⎥⎦⎤⎢⎣⎡===-0,)(ξ所以k n k nk nk k q p k n k P k E -==⎥⎦⎤⎢⎣⎡⋅=⋅=∑∑00ξ)1()1(1011----=∑⎥⎦⎤⎢⎣⎡--=k n k nk q p k n nP np q p nP n =+=-1)( (2.22)例 2.15 (略)P 80定义 2.5 若离散型随机变量ξ可能取值为),,2,1(Λ=i a i 其分布列为),,2,1(Λ=i P i 则当∞<∑∞=1||i i ip a(2.24)时,称ξ存在数学期望,并且数学期望为∑∞==1i i i p a E ξ (2.25)如果∞=∑=i i ip a||1则称ξ的数学期望不存在.对于这个定义,读者也许会问,既然数学期望∑==1i ii pa E ξ,那么只要∑∞=1i ii pa 收剑就可以了,为什么还要求∞<∑∞=1||i i ip a是不是有点多余?我们已经知道,离散型随机变量的取值是可依某种次序一一列举的,对同一个随机变量,它的取值的列举次序可以有所不同,当改变列举次序时它的数学期望是不应该改变的,这就意味着无穷级数∑∞=1i ii pa 的求和次序可以改变而其和要保持不变,由无穷级数的理论知道,必须有∑∞=1i ii pa 绝对收剑即∞<∑∞=1||i i ip a,才能保证它的和不受求和次序变动的影响.定理 2.2 若ξ是一个离散型随机变量,其分布列为又g(x)是实变量x 的单值函数,如果∞<∑∞=1||i i ip a,则有∑∞==0)()(i i i p a g Eg ξ (2.26)证明 令),(ξηg =则η仍是一个离散型随机变量,设其可能取的值为)2,1(Λ=j b j ,于是由(2.20)式有∑====ji b a g ij a P b P )()()(ξη由数学期望定义有∑∞====1)()(j i j b p b E Eg ηηξ∑∑=∞===ji b a g ij ja pb )(1)(ξ∑∑=∞===ji b a g iij a p a g )(1)()(ξ∑∞==⋅=1)()(i i i a p a g ξ即为所证类似还可以证下述定理.定理 2.3 若(ξ,η)是一个二维离散型随机变量,其联合分布列为Λ2,1,,),(====j i p b a p ij j i ηξ又),(y x g 是实变量x,y 的单值函数,如果∞<∑∑∞=∞=11|),(|i j ijjipb a g则有∑∑∞=∞==11),(),(i j ij j i p b a g Eg ηξ (2.27)对一般的n 维随变量的函数,也有相应的定理成立,这里就不再叙述了.由于这些定理,在求离散型随机变量函数的数学期望时,就可以直接利用原来随机变量的分布,而不必先求随机变量函数的分布列.现在进一步讨论数学期望的性质.随机变量的数学期望具有下述基本性质:(1) 若b a ≤≤ξ,则ξE 存在,且有b E a ≤≤ξ.特别,若C 是一个常数,则EC=C. (2) 对于一二维离散型随机变量(ξ,η),若ξE ,ηE 存在,则对任意的实数),(,,2121ηξk k E k k 存在且ξξηξE k E k k k E 2121)(+=+ (2.28)(3) 又若ξ,η是相互独立的,则ξηE 存在且ηξξηE E E ⋅=)( (2.29)性质(1)的证明是显然的,下面证明性质(2)和(3). 设(ξ,η)的联合分布列和边际分布列为:Λ,,,),(j i p b a P ij j i ===ηξΛ2,1,)(===⋅i P a P i i ξ Λ2,1,)(===⋅j P b P j j η由定理2.32有∑∑∞=∞=+=+112121)()(i j ij j i P b k a k k k E ηξ∑∑∑∑∞=∞=∞=∞=+=112111i j ij j i j ij i p b k p a k∑∑∞=⋅∞=⋅+=1211j j j i i i p b k p a kηξE k E k 21+=这里级数∑∑∞=∞=+1121)(i j ij j ip b k ak 绝对收剑是明显的,所以)(21ηξk k E +存在且(2.28)式成立,性质(2)证得.仍得用定理2.3并由独立性有ηξξηE E p b p a p b a E j j j i i i i j ij j i •=•==∑∑∑∑∞=⋅∞=⋅∞=∞=1111)(这里级数∑∑∞=∞=11i j ij jip ba 的绝对收剑也是显然的,所以ξηE 存在且(2.28)式成立,性质(3)得证.性质(2)和(3)都可以推广到任意n 维随机变量的场合,当然,就性质(3)来说,要求这n 维随机变量是相互独立的.一个随机变量η,如果它的分布列是0---1分布:⎥⎦⎤⎢⎣⎡-p p 110 则显然有ηE =⋅P例 2.14 (略)见P 87。
5.数学期望的基本性质利用数学期望的定义可以证明,数学期望具有如下基本性质:设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则性质1.E(c)=c;性质2.E(aξ)=aE(ξ);性质3.E(a+ξ)=E(ξ)+a;性质4.E(aξ+b)=aE(ξ)+b;性质5. E(ξ+η)=E(ξ)+E(η).例3.5.7设随机变量X的概率分布为:P(X =k)=0.2 k =1,2,3,4,5.求E(X),E(3X+2).解. ∵P(X=k)=0.2 k=1,2,3,4,5∴由离散型随机变量的数学期望的定义可知E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3,E(3X+2)=3E(X)+2=11.例3.5.8. 设随机变量X的密度函数为:求E(X),E(2X-1).解.由连续型随机变量的数学期望的定义可知=-1/6+1/6=0.∴E(2X-1)=2E(X)-1=-1.我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.4.1.2 数学期望的性质(1)设是常数,则有。
证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。
所以,。
(2)设是随机变量,是常数,则有。
证若是连续型随机变量,且其密度函数为。
当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。
(3)设都是随机变量,则有。
此性质的证明可以直接利用定理4.1.2,我们留作课后练习。
这一性质可以推广到有限个随机变量之和的情况,即。
(4)设是相互独立的随机变量,则。
证仅就与都是连续型随机变量的情形来证明。
设的概率密度分别为和,的联合概率密度为,则因为与相互独立,所以有。
由此得此性质可以推广到有限个相互独立的随机变量之积的情况。
例4.1.2 倒扣多少分?李老师喜欢在考试中出选择题,但他知道有些学生即使不懂哪个是正确答案也会乱撞一通,随便选一个答案,以图侥幸。
数学期望的计算性质
数学期望的计算性质:
1、设X是随机变量,C是常数,则E(CX)=CE(X)。
2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。
3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。
4、设C为常数,则E(C)=C。
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”“期望值”也许与每一个结果都不相等。
期望值是该变量输出值的平均数。
期望值并不一定包含于变量的输出值集合里。
大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
概率论中的期望与方差概率论是一门研究随机现象的数学理论。
在概率论中,期望和方差是两个重要的概念。
本文将围绕这两个概念展开阐述,并探讨它们在概率论中的应用。
一、期望的定义与性质期望是对随机变量的平均值的度量,反映了随机变量的平均水平。
设随机变量X的分布律为P(X=x),则X的期望E(X)定义为∑[x·P(X=x)]。
期望具有线性性质,即对于任意常数a和b,E(aX+b)=aE(X)+b。
期望在概率论中有着广泛的应用。
在统计学中,期望被用于描述样本均值的性质。
在金融领域,期望被用于计算资产收益的预期值。
在工程学中,期望被用于评估系统的性能。
二、方差的定义与性质方差用于衡量随机变量的离散程度。
设随机变量X的分布律为P(X=x),则X的方差Var(X)定义为∑[(x-E(X))^2·P(X=x)]。
方差的算术平方根称为标准差。
方差的计算是概率论中的重要内容。
方差衡量了随机变量与其期望之间的差异程度,越大表示随机变量值的分散程度越大。
方差的应用包括金融学中的风险度量、质量控制中的异常度量等。
三、期望与方差的关系期望和方差是概率论中两个紧密相关的概念。
根据方差的定义可得,Var(X)=E[(X-E(X))^2]。
这说明方差是对随机变量离散程度的度量,同时也可以看作是随机变量与其期望之差的平方的期望。
期望和方差之间存在一定的关系。
例如,对于两个独立随机变量X和Y,有Var(X+Y)=Var(X)+Var(Y)。
这个性质被称为方差的可加性。
另外,若常数a和b分别为aX和bY的系数,则Var(aX+bY)=a^2·Var(X)+b^2·Var(Y)。
四、期望与方差的应用期望和方差在概率论中有着广泛的应用。
以期望为例,它可以用于计算随机变量的平均值,进而评估随机事件的结果。
在统计学中,期望被用于估计总体参数,如样本均值是总体均值的无偏估计。
方差的应用也是多种多样的。
在金融学中,方差被用于度量资产的风险程度。