数学期望及其性质
- 格式:ppt
- 大小:461.50 KB
- 文档页数:15
第29讲数学期望的性质2数学期望的性质:可推广到任意有限个随机变量线性组合的情况:0011()().n ni i i i i i E c c X c c E X ==+=+∑∑1. 设c 是常数, 则有();E c c =2. 设X 是一个随机变量, c 是常数, 则有()();E cX cE X =3. 设X, Y 是两个随机变量, 则有()()();E X Y E X E Y +=+()()();E aX bY c aE X bE Y c ++=++将上面三点合起来,则有3可推广到任意有限个相互独立的随机变量之积的情况:11()(),,1,2,,, n ni i i i i E X E X X i n ==∏=∏= 其中 相互独立.4. 设X , Y 是相互独立的两个随机变量, 则有()()();E XY E X E Y =4()().E X E Y =+1.()1,()()1.c P X c E c E X c c ====⨯=是常数,2. ()()()().X X E cX cx f x dx c xf x dx cE X +∞+∞-∞-∞===⎰⎰ 3. ()()(,) (,)(,)E X Y x y f x y dxdy xf x y dxdy yf x y dxdy+∞+∞-∞-∞+∞+∞+∞+∞-∞-∞-∞-∞+=+=+⎰⎰⎰⎰⎰⎰证明:((),(,)(,))X X f x X Y f x y ~~下面仅对连续型随机变量给予证明 设(利用随机变量函数的数学期望的两个定理来证)54. ()(,) ()() ()() ()().X Y X Y E XY xyf x y dxdyxyf x f y dxdyxf x dx yf y dyE X E Y +∞+∞-∞-∞+∞+∞-∞-∞+∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰数学期望的性质:1. 设c是常数, 则有();E c c=2. 设X是一个随机变量, c是常数, 则有()();E cX cE X=3. 设X, Y是两个随机变量, 则有()()();+=+E X Y E X E Y 将上面三点合起来,则有()()();++=++E aX bY c aE X bE Y c4. 设X, Y是相互独立的两个随机变量, 则有=E XY E X E Y()()().672~(,)().X N E X μσμ= 设 ,证明: 例1:, , (0.)X Z Z E Z μσ-==令 则服从标准正态分布且证明:()()()()()0.E X E Z E E Z E Z μσμσμσμσμ=+=+=+=+= 故 2(,) .N μσμ服从 的随机变量的期望为即,X Z μσ=+此时8~(,),01,1,().X B n p p n E X <<≥ 设 求 例2:,, (). X n A P A p =由题意知随机变量可看成是重贝努里试验中事件发生的次 解: 数此时 引入随机变量1,;1,2,,.0,,k A k X k n A k ⎧==⎨⎩ 在第次试验发生在第次试验不发生()()12 ,,,,01,(),, n k X X X p E X p k -=∀ 于是相互独立服从同一分布参数为 121.nn k k X X X X X ==+++=∑ 且 11()()(),n n k k k k E X E X E X np =====∑∑故 ,.() B n p np 服从 的随机变量的期望为即注: 以n , p 为参数的二项分布的随机变量,可分解为n 个相互独立且都服从以p 为参数的(0-1)分布的随机变量之和.9(),1,2,,,,1,2,,.,,,,().n n n X n E X 配对问题一个小班有个同学 编号为号 中秋节前每人准备一件礼物 相应编号为将所有礼物集中放在一起 然后每个同学随机取一件 若取到自己的礼物 就认为配对成功.以表示个同学配对成功的个数求 例3: 1, ;1,2,,.0,,i i X i n i ⎧==⎨⎩ 第号同学配对成功引入随机变量 第号同学未配对成功解:121,01,. n i X X X X X n=+++- 易知: 且服从分布参数为1111()()() 1.n n n i i i i i E X E X E X n=======∑∑∑故 X 注: 不服从二项分布!10,,.X 本题是将分解成数个随机变量之和 然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望 这种处理方法具有一定的普遍意义1110010010011()()() 4.5.i i i i E Y E X E X ===∏=∏=从而 0~9,100,,1,2,,100.100,,,().i X i i Y E Y = 计算机程序随机产生中的数字 独立进行次记为第次产生的数字将这个数进行乘积运算得到一数记为求 例4:12100,,,,,,{}1/10,0,1,,9.i X X X P X k k === 由题意知独立同分布其分布律均为 解:901() 4.5,10i k E X k ==⋅=∑故 100121001,i i Y X X X X ===∏ 又。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
期望和期望的性质1. 若E[X]和E[Y]均有限,在(X,Y)连续的情况下:E[X+Y]=E[X]+E[Y]E[X1+X2+...X n]=E[X1]+E[X2]+...+E[X n](上式不要求X,Y独⽴)2. 若X,Y具有⼆元分布列p(x,y),那么:E[g(X,Y)]=∑∑g(x,y)p(x,y)若X,Y具有联合分布密度,那么:E[g(X,Y)]=∫∫g(x,y)f(x,y)dxdy3. 若X,Y独⽴,那么:E[X1X2...X n]=E[X1]E[X2]...E[X n]4. 样本均值的期望等于其分布的均值。
5. 若X,Y独⽴,那么:E[g(X)h(Y)]=E[g(X)]E[h(Y)]6. 协⽅差Cov(X,Y)=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y]7. 若X1,...X n两两独⽴,那么Var(∑X i)=∑Var(X i)即,独⽴随机变量和的⽅差等于他们⽅差的和。
8. 两个随机变量X,Y的相关系数ρ=Cov(X,Y)/sqrt(Var(X)·Var(Y))相关系数是两个随机变量间线性依赖程度的⼀种度量。
-1≤ρ≤1ρ接近0,表⽰两者缺乏线性依赖性。
ρ=0,X,Y不相关。
ρ取正值,X增加时Y趋于增加;ρ取负值,X增加时Y趋于下降。
9. 浙江⼤学,概率论与数理统计,数学期望,产品产量、销售量与利润期望的问题:销售量Y是个随机变量,产品产量x是⼀个待求的⾮随机变量。
如果把这两者画在数轴上,Y的位置是随机游动的。
根据Y与x的相对位置,利润有不同的表达式(Y在x左侧,产品有积压;Y在x右侧,产品⽆积压)。
这样将期望表达式的积分区间分为[0,x]和[y,+∞]。
一、数学期望的性质1.设C 是常数,则E (C )=C ;4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X );3.E (X +Y )=E (X )+E (Y );注意:由E (XY )=E (X )E (Y )不一定能推出X 、Y 独立推广(诸X i 相互独立)推广11[]()n n i i i i E X E X ===∑∑11[]()n n i i i i E X E X ===∏∏例1 性质 4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定独立X Y p ij-1 0 1-1118181818181818180p • j 383828p i•383828()()0;E X E Y ==()0;E XY =()()()E XY E X E Y =1(1,1)8P X Y =-=-=23(1)(1)8P X P Y ⎛⎫≠=-=-= ⎪⎝⎭5.若X ≥0,且EX 存在,则EX ≥0.推论:若X ≤Y ,则EX ≤EY .证明:设X 为连续型随机变量,密度函数为f (x ),则由X ≥0得:所以证明:∵Y −X ≥ 0,E (Y −X )≥0又∵E (Y −X )=E (Y )−E (X ) E (X ) ≤E (Y ).()0,0f x x =<0()()0EX xf x dx xf x dx +∞+∞-∞==≥⎰⎰例1.(二项分布B(n,p)) 设单次实验成功的概率是p ,问n 次独立重复试验中,成功次数X 的期望?解: 引入1,0,i i X i ⎧⎪=⎨⎪⎩第次试验成功,第次试验不成功。
则X =X 1+X 2+⋯+X n 是n 次试验中的成功次数。
因此,这里,X ~B(n,p).1()n i i EX E X ==∑1(1)ni i P X ===∑np=本题是将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.为普查某种疾病,n 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验n 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设:每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例2.二、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.设:第i 组需化验的次数为X i ,则其分布律为Xi1 k +1 P(1−p )k 1− (1−p )k ()1(1)(1)[1(1)]k k i E X p k p =⨯-++⨯--(1)(1)kk k p =+--解:为简单计,不妨设n 是k 的倍数,共分成j =n /k 组.(2)分组化验.每k 个人为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,此时k 个人的血需化验k+1次.每个人血液化验呈阳性的概率为p .若则E (X ) < n ,即方案2优于方案1方案2:需要化验的总次数为如:n =1000, p =0.001, k =10()(1)(1)k i E X k k p =+--1()()j i i E X E X ==∑12j X X X X =+++[(1)(1)]k n k k p k =+--1[1((1))]k n p k =---1(1)0,k p k-->101()1000[1(0.999)]1101000.10E X =--≈<<例3.据统计65岁的人在10年内正常死亡的概率为0.98,因事故死亡概率为0.02.保险公司开办老人事故死亡保险,参加者需交纳保险费100元.若10年内因事故死亡公司赔偿a元,应如何定a,才能使公司可期望获益;若有1000人投保,公司期望总获益多少?表示保险公司从第i个投保者身上所得的收益,i=1,2, (1000)解:设Xi则其分布律为:X i100 100−aP0.98 0.02)=100×0.98+(100−a)×0.02= 100−0.02a>0易求得E(XiE (X i )=100−0.02a >0即:当100<a<5000时,公司可期望获益若1000人投保,期望总收益为1000100011()()10000020i ii i E X E X a ====-∑∑例4.市场上对某种产品每年需求量为X 吨,X ~U [2000,4000],每出售一吨可赚3万元;售不出去,则每吨需仓库保管费1万元,问应该生产这种商品多少吨,才能使平均利润最大?解:设每年生产y 吨,其利润为Y .则易知,2000<y <4000,且有易知,需求量X 的密度函数为1,20004000()20000,X x f x ⎧<<⎪=⎨⎪⎩其它3,()3()1,y y X Y g X X y X y X ≤⎧==⎨--⋅>⎩3,4,y y X X y y X≤⎧=⎨->⎩3,()4,y y X Y g X X y y X ≤⎧==⎨->⎩3,()4,y y x g x x y y x ≤⎧=⎨->⎩()()()X E Y g x f x dx +∞-∞=⎰400020001()2000g xdx =⎰261(214000810)2000y y =-+-⨯4000200011()()20002000y y g x dx g x dx =+⎰⎰4000200011(4)320002000y y x y dx y dx =-+⎰⎰即:当y=3500时,E (Y )最大,最大值为8250万元.解得:y=3500()1(414000)2000dE Y y dy =-+0=令261()(214000810)2000E Y y y =-+-⨯。
随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)), (-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。
§2.4数学期望的定义与性质一. 数学期望的定义数学期望——描述随机变量取值的平均特征定义1:若X ~P{X=x k }=p k ,k=1,2,…n,则称 knk kp xEX ∑==1为r.v.X 的数学期望,简称期望或均值。
定义2.(p81)若X ~P{X=x k }=p k ,k=1,2,…,且∞<∑=k nk k p x 1则称 kk kp xEX ∑∞==1为r.v.X 的数学期望。
二、几个重要r.v.的期望1.0-1分布的数学期望:⎪⎪⎭⎫⎝⎛-p p 110P EX =⇒2.二项分布B(n,p)3.普哇松分布三、随机变量函数的期望定理2.2:若X ~P{X=x k }=p k ,k=1,2,…,则Y=g(X)的期望E(g(X))为(p84)定理2.3:若(X,Y)~P{X=x i ,Y=y j,}=p ij ,i,j=1,2,…,则Z=g(X ,Y)的期望例5:设随机变量(X,Y)的分布列如下,求E(XY)。
nk p p C k X P kn kkn ,...1.0)1(}{=-==-np p p k n k n k X E n k kn k =--=∑=-1)1()!(!!)(...,2,1,0,!}{~===-k e k k X P X kλλ∑∑∞=∞=---=-==11;)!1(!)(k k k kk eek kX E λλλλλλ.)()]([)(1k k kp xg X g E Y E ∑∞===.),()],([)(11ij i j ij p y xg Y X g E Z E ∑∑∞=∞===四.数学期望的性质1.E(c)=c,c 为常数;2.E(aX+bY)=aE(X)+bE(Y),a,b 为常数;3.若X 与Y 独立,则E(XY)=E(X)E(Y)。
例6:若X ~B(n,p),求E(X)。
解:设=)(XY E 解:15.010⨯⨯15.020⨯⨯+45.011⨯⨯+25.021⨯⨯+95.0=⎩⎨⎧=不出现时试验事件当第次出现时试验事件当第次A i A i X i 01p X E i =)(则∑==ni iX X 1∑==n i iXE X E 1)()(npp ni ==∑=1。