三角函数题型分类总结
- 格式:doc
- 大小:666.00 KB
- 文档页数:9
三角函数高考题型分类总结根据出现频率和难度程度,三角函数的高考题型可以分为以下几类:1.求解三角函数值:给定某个角度,求其正弦、余弦、正切等函数值。
这是三角函数的基本应用,通常难度较低。
2.证明恒等式:要求学生运用三角函数的基本公式和性质,证明某些三角函数的恒等式。
难度较高。
3.解三角形:给定某些三角形的一些角度或边长,要求学生利用三角函数的基础知识求解其余角度或边长。
难度较高。
4.求解三角方程:给定某些三角函数的式子,要求学生解出该式的解集。
这种题型通常需要学生掌握一定的三角函数公式,难度较高。
5.综合应用:要求学生将三角函数运用到实际问题中,如求解高度、距离等。
考察学生对三角函数的理解和应用能力。
难度较高。
除了以上几种常见的题型,还可能出现一些变形题,需要学生根据题目情况灵活运用三角函数的知识。
总的来说,三角函数在高考中的重要性不言而喻,学生需要扎实掌握相关知识和技能。
6.三角函数的图像与性质:考察三角函数的图像、周期、奇偶性、单调性等性质,需要学生掌握函数图像的绘制和相关概念的理解。
7.复合三角函数:考察学生对三角函数复合的概念和公式的掌握,需要注意不同变换下函数值的变化。
8.三角函数的导数:考察学生对三角函数的导数概念和计算方法的掌握,包括链式法则、求导公式等内容。
9.反三角函数:考察学生对反三角函数的定义、性质和公式的掌握,需要注意定义域、值域和解的判断。
10.三角函数的应用:考察学生将三角函数用于实际问题的解决,如解决三角形、距离等问题。
总的来说,三角函数是高中数学中重要的一部分,掌握好三角函数的知识对于高考的成绩至关重要。
在复习中,学生需要注重基础知识的巩固,深入理解概念和定理,做好练习题和真题的训练,同时灵活应用所学知识解决实际问题。
三角函数十大题型三角函数是数学中的重要概念,与几何图形和三角形的关系密切相关。
在学习三角函数时,有一些常见的题型是必须要熟练掌握的。
下面将介绍三角函数的十大题型以及解题方法。
1. 求角度的正弦、余弦、正切值对于给定的三角函数值,如正弦值sinα=1/2,我们需要求出对应的角度α。
对于求解这类问题,我们可以通过查表法或使用计算器进行近似计算。
2. 求角度的值域与周期对于三角函数中的角度,不同的函数具有不同的值域和周期。
例如,正弦函数的值域是[-1, 1],周期是2π。
需要掌握各个三角函数的值域和周期,以便在解题过程中进行合理的计算和判断。
3. 角度的性质和恒等变换三角函数中的角度具有一些特殊的性质和恒等变换,如正弦函数的奇偶性、余弦函数的周期性等。
掌握这些性质和变换可以简化问题的求解过程。
4. 通过图像求解问题三角函数的图像可以帮助我们理解和解决问题。
例如,通过观察正弦函数的图像,我们可以确定其最大值、最小值、零点等信息,从而解决与角度相关的问题。
5. 解三角函数方程三角函数方程是指包含三角函数的方程,需要求解其中的未知量。
解三角函数方程时,我们可以通过恒等变换、化简和换元等方法,将其转化为简化的方程组或方程,从而求解出未知量的值。
6.求三角函数的导数求三角函数的导数是解决曲线变化问题的基础。
通过计算三角函数的导数,我们可以求解与速度、加速度等相关的问题。
7. 三角函数的图像变换通过对三角函数进行平移、伸缩和翻转等图像变换,可以得到新的三角函数图像。
掌握这些图像变换可以帮助我们更好地理解和运用三角函数。
8. 三角函数的复合运算在三角函数的求解过程中,经常会遇到要求解三角函数的复合运算,如sin(2x)、cos(2x)等。
掌握三角函数的复合运算可以帮助我们简化问题,并得到更简洁的解答。
9. 三角函数与三角恒等式的运用三角函数与三角恒等式是数学中的重要工具,可以帮助我们简化问题,并得到更方便的解答。
掌握三角函数与三角恒等式的运用可以提高解题的效率和准确性。
三角函数题型总结
在数学中,三角函数是研究角度和两边关系的函数。
三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)等。
本文将对常见的三角函数的题型进行总结。
一、求角度:给定三角函数值,求对应的角度。
(1)已知sinA=1/2,求角度A。
三、在已知条件下,求其他三角函数值。
已知角度A,利用已知的三角函数值,求其他三角函数值。
(1)已知sinA=3/5,求cosA、tanA、cotA、secA和cscA。
四、三角函数的基本性质。
包括周期性、奇偶性、界值性、单调性等。
例如:证明sin(π/2−x)=cosx。
五、三角函数的和差化简。
(1)sin(A±B)的化简公式。
六、三角方程的解。
(1)sinx=a的解。
包括周期函数的图像、变化规律、极值点等。
例如:求函数y=sin2x+cos2x的最大值和最小值。
(1)三角函数在图形的描述中的应用。
例如:利用三角函数的图象,描述椭圆。
例如:计算太阳高度角。
三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。
-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。
-二倍角公式、半角公式、和差化积、积化和差公式等。
2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。
-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。
-利用正弦定理和余弦定理解决边角关系问题。
3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。
-利用图像解三角函数方程和不等式。
4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。
-在地理学中的应用,如地图上的方位角、距离计算等。
-在工程学中的应用,如结构力学、电路分析等。
5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。
-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。
6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。
以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
三角函数解三角形题型归类一知识归纳:(一)任意角、弧度制及任意角的三角函数1.角的概念(1)任意角:①定义:角可以看成平面内绕着端点从一个位置旋转到另一个位置所成的;②分类:角按旋转方向分为、和.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S=.(3)象限角:使角的顶点与重合,角的始边与,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个,负角的弧度数是一个负数,零角的弧度数是 .(2)角度制和弧度制的互化:180°=π rad,1°=π180rad ,1rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α= ,cos α= ,tan α= .(2)任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=y x(x ≠0)4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念1.三角函数诱导公式⎝ ⎛⎭⎪⎫k 2π+α(k ∈Z)的本质奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).2.两角和与差的三角函数公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,cos2α=1+cos 2α2,sin2α=1-cos α2;(3)tan 2α=2tan α1-tan2α.(三)正、余弦定理及其变形:1.正弦定理及其变形在△ABC中,asin A=bsin B=csin C=2R(其中R是外接圆的半径);a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a2R,sin B =b2R,sin C =c2R.2.余弦定理及其变形a 2=b 2+c 2-2bc cos A ; cos A =b 2+c 2-a 22bc.b 2= ; cos B = ;c 2= . cos C = .3.三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .2.整体法:求y=A sin(ωx+φ)(ω>0)的单调区间、周期、值域、对称轴(中心)时,将ωx+φ看作一个整体,利用正弦曲线的性质解决.3.换元法:在求三角函数的值域时,有时将sin x(或cos x)看作一个整体,换元后转化为二次函数来解决.4.公式法:y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=A tan(ωx+φ)的最小正周期为π|ω|.(2016年全国卷1)4.△ABC的内角A,B,C的对边分别为a,b,c.已知5a=,2c=,2cos3A=,则b=(A)2(B)3(C)2(D)36.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为 (A )2sin(2)4y x π=+(B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=————————————.(2015年 全国卷1)8. 函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =o ,且2,a =求ABC ∆的面积.(2014年 全国卷1) 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D.02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2013年 全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC∆的内角,,A B C的对边分别为,,a b c,223cos cos 20A A +=,7a =,6c =,则b =(A )10 (B )9 (C )8 (D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.(2012年 全国卷1)9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π417.(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3sin sin c a C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆的面积为3,求b ,c .三、题型归纳题型一、三角函数定义的应用 1.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y等于( ) A.-33B.33C.-3 D.3变式1.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4 题型二、三角函数值的符号 2.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4变式2.设α是第二象限角,P (x,4)为其终边上的一点,且cosα=15x,则tanα=( )A.43B.34C.-34D.-4 3题型三、同角三角函数关系式的应用3.已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ等于( )A.-43B.54C.-34D.454.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( )A.-1 B.-22C.22D.1题型四 诱导公式的应用5.(1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________.(2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知角α终边上一点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为题型五、三角函数的图形变换6.(1)要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移π6个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.变式5.已知函数y =2sin ⎝⎛⎭⎪⎫2x +π3.(1)求它的振幅、周期、初相;(2)说明y =2sin ⎝⎛⎭⎪⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.题型六、三角函数的性质问题7.(1)函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调增区间为________.(2)已知函数f (x )=cos ⎝⎛⎭⎪⎫ωx +φ-π2⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值时x 的集合为( ) A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z(3)函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π2,0对称B.关于直线x =5π12对称C.关于点⎝ ⎛⎭⎪⎫5π12,0对称D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x 是( )A.奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称 B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称变式6.已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.题型七、最值与值域问题 8.已知函数2()(sinx cosx)cos 2f x x =++。
《三角函数》全章题型归纳一、三角函数的三大定义: 在直角三角形中,如果锐角∠A 确定1、正切:那么∠A 的对边和邻边之比随之确定,这个比值叫做∠A 的正切,记作tanA, 即:tanA= (可以描述斜坡的坡度)2、正弦:那么∠A 的对边和斜边之比随之确定,这个比值叫做∠A 的正弦,记作 ,即: = .3、余弦:那么∠A 的邻边和斜边之比随之确定,这个比值叫做∠A 的余弦,记作 . 即: = .4、注意:A 、一个角的 、 、 称为这个角的三角函数B 、一个角的大小确定以后,所对应的三角函数值也就确定了,与其所处的位置C 、三角形函数都是建立在 的锐角基础上的,找准各类函数的比值关系后,请熟练运用例题:在直角三角形ABC 中,∠C=90°,tanA 与tanB 有什么关系?若该三角形中,tanA=21,求sinA ,cosA 的值练习1:在Rt △ABC 中,∠ACB=90°,CD ⊥AB,CD=2,AD=3,求∠A 和∠B 的三角函数值练习2:在等腰直角三角形ABC 中,∠C=90°,AC=6.D 是AC 上一点.若tan ∠DBA=51,求AD 的长课堂秒杀:特殊的三角函数值1、特殊角的三角函数是数学中研究的重要依据,包含: 、 、2、快速写出的下列的函数值:Sin45°= tan60°= Sin30°= tan45°= sin60°= tan30°= tan 245°= tan 230°= sin 245°= tan 260°=今日课题:快速利用直角三角形模型解决实际生活问题例题:如图:已知楼房AB 高40米,铁塔CD 塔基中心C 到AB 楼房房基间水平距离B 为40米,从A 望D 的仰角30°求塔CD 的高.题型一:两个直角三角形例题:某中学在教学楼前新建了一座雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为,底部B 点的俯角为,小华在五楼找到一点D ,利用三角板测得A 点的俯角为(如图).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据73.13 ).30°45°60°AB CD30°模型:45°模型:DA练习:小红同学用仪器测量一棵大树AB的高度,在C 处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,3≈1.732).题型二:运动形中的非特殊角例题:如图:甲、乙两只捕捞船同时从A港出海捕鱼。
三角函数题型总结
三角函数是数学中的一个重要概念,它与三角形的各边长度之间的关系紧密相关。
在
解决各种三角形相关问题时,我们经常会用到三角函数。
基本的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数:余割函数(csc)、正割函数(sec)、余切函数(cot)。
这些函数分别描述了角度θ与直角三角形中的对应比值之间的关系。
在三角函数题中,常见的问题类型包括以下几种:
1. 求角度的大小:给定一个三角函数的值,要求求出角度的大小。
已知sinθ=0.5,求θ的值。
在这种情况下,我们需要使用反三角函数,例如arcsin。
3. 利用三角函数求三角形的边长:已知一个角度和一个边长,要求求出三角形的其
他边长。
已知θ=45°,以及一个直角三角形的一个边长为2,求另外两边的长度。
在这种情况下,我们可以利用三角函数的定义来求解,根据比例关系来计算未知边长。
以上只是一些常见的三角函数题型总结,实际上,还有许多其他类型的三角函数问题,这些问题常常与解三角形、解优化问题等数学问题密切相关。
在解决这些问题时,我们需
要熟练掌握三角函数的定义、性质以及一些常用的三角恒等式,这样才能更好地应用三角
函数来解决实际问题。
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
三角函数高考题型分类总结
在高考数学中,三角函数是一个重要的考点,通常会涉及到以下几种题型分类:
1. 求特殊角的值:考生需要掌握常见角度(如30°、45°、60°)对应的正弦、余弦、正切值等,以及这些值的简单性质。
2. 求三角函数的基本关系:包括正弦定理、余弦定理、正切的定义等。
考生需要能够根据已知条件利用这些关系式求解各种三角函数的值。
3. 化简与证明:考生需要根据三角函数的性质进行化简或证明,例如利用和差化积、倍角公式、半角公式等来简化复杂的三角函数表达式。
4. 解三角函数方程:要求考生解出满足某个条件的三角函数方程,例如求解sin x = 0、cos x = 1/2等。
解题方法包括利用特殊角的周期性、利用图像、利用性质变形等。
5. 三角函数的图像与性质:要求考生根据给定的函数表达式画出三角函数的图像,并利用图像分析函数的周期性、单调性、奇偶性等性质。
6. 三角函数的应用:考生需要掌握利用三角函数解决实际问题的方法,例如利用正弦定理解决三角形的边长或角度、利用余弦定理解决三角形的边长或角度、利用正切函数解决两点之间的高度差等。
这些是一些常见的三角函数的高考题型分类,通过理解和掌握这些题型,考生可以更好地应对高考数学中的三角函数相关题目。
当然,具体的考题形式还需要根据不同的考试要求和出题风格来进行针对性的准备。
专题 三角函数题型分类总结一 求值问题类型1 知一求二 即已知正余弦、正切中的一个,求另外两个方法:根据三角函数的定义,注意角所在的范围(象限),确定符号;例 4sin 5θ=,θ是第二象限角,求cos ,tan θθ类型2 给值求值例1 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.练习1、sin330︒= tan690° = o 585sin =2、(1)α是第四象限角,12cos 13α=,则sin α= (2)若4sin ,tan 05θθ=->,则cos θ= .(3)已知△ABC 中,12cot 5A =-,则cos A = .(4) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1)已知sin 5α=则44sin cos αα-= . (2)设(0,)2πα∈,若3sin 5α=)4πα+= .(3)已知3(,),sin ,25παπα∈=则tan()4πα+=4、下列各式中,值为23的是( ) (A )2sin15cos15︒︒(B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 225. (1)sin15cos75cos15sin105+= (2)cos 43cos77sin 43cos167o o o o += 。
6.(1) 若sin θ+cos θ=15,则sin 2θ=(2)已知3sin()45x π-=,则sin 2x 的值为(3) 若2tan =α ,则ααααcos sin cos sin -+=7. 若角α的终边经过点(12)P -,,则αcos = tan 2α=8.已知cos()22πϕ+=,且||2πϕ<,则tan ϕ=9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 10.已知53)2cos(=-πα,则αα22cos sin -的值为 ( ) A .257 B .2516- C .259 D .257-11.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4π)的值为 ( )A .-2627 B .2627 C .-26217 D .26217二 最值问题 相关公式两角和差公式;二倍角公式;化一公式 例 求函数3sin 4cos y x x =+的最大值与最小值 例 求函数23sin 4sin 4y x x =+-的最大值与最小值 例.求函数21sin cos (sin cos )y x x x x =++++的值域。
练习1.函数()sin cos f x x x =最小值是 。
2.函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为3.函数()cos 22sin f x x x =+的最小值为 最大值为 。
4.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于5.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .6.动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B .CD .27.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1B.12+ C.32三 单调性问题 相关公式:(1) 正余弦函数的单调性; (2)化一公式例 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求函数()f x 的单调增区间.练习1.函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是 ( ).A. ]3,0[π B. ]127,12[ππ C. ]65,3[ππ D. ],65[ππ2.函数sin y x =的一个单调增区间是 ( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 ( )A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4. 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( )A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间34ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数四.周期性问题 相关公式:二倍角公式;化一公式;两角和差公式公式:(1) 正(余)弦型函数sin()(,0)y A x A ωϕω=+>的最小正周期2T πω=,(2)正切型函数tan()(0)y A x ωφω=+>的最小正周期T πω=, 例1 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求函数()f x 的最小正周期.例2 函数()|sin |f x x =的周期是 。
结论:一般情况,函数|()|f x 的周期将减半。
方法总结:求函数的周期,必须将函数化为sin()y A x k ωφ=++的形式才可以练习1.下列函数中,周期为2π的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x =2.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω=3.函数|2sin |x y =的最小正周期是 .4.(1)函数x x x f cos sin )(=的最小正周期是 .(2)函数)(1cos 22R x x y ∈+=的最小正周期为 . 5.(1)函数()sin 2cos 2f x x x =-的最小正周期是(2)函数()(1)cos f x x x =+的最小正周期为 (3). 函数()(sin cos )sin f x x x x =-的最小正周期是 . (4)函数x x x x f cos sin 322cos )(-=的最小正周期是 .6.函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.函数2(sin cos )1y x x =++的最小正周期是 . 五 对称性问题以正弦型函数sin()(,0)y A x A ωϕω=+>为例,说明对称问题的解法: (1)求对称中心,令x k ωφπ+=,解得x ,写为(,0)x 的形式,即对称中心; (2)求对称轴,令2x k πωφπ+=+,解得0x ,则直线0x x =即为对称轴;(3)若函数是奇函数,则必有(0)0f =,即sin 0φ=,故k φπ=;若函数是偶函数,则必有(0)f A =±,即sin 1φ=±,故2k πφπ=+;例2sin(2)3y x π=+的对称中心是 ,对称轴方程是 .练习1.函数4sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=- C .6x π= D .12x π=2.下列函数中,图象关于直线3π=x 对称的是 ( )A )32sin(π-=x yB )62sin(π-=x yC )62sin(π+=x yD )62sin(π+=x y3.函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象 ( )A.关于点π03⎛⎫ ⎪⎝⎭,对称 B.关于直线π4x =对称 C.关于点π04⎛⎫⎪⎝⎭,对称 D.关于直线π3x =对称 4.如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2π5.已知函数y =sin ⎝ ⎛⎭⎪⎫x -π12cos ⎝ ⎛⎭⎪⎫x -π12,则下列判断正确的是( )A .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎫π12,0B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎫π12,0C .此函数的最小正周期为2π,其图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0D .此函数的最小正周期为π,其图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0六.图象变换问题函数sin()(,0)y A x A ωϕω=+>中,A 叫振幅,周期2T πω=,φ叫初相,它的图象可以经过函数 sin y x =的图象经过平移,伸缩变形得到,具体方法是:(1)纵向伸缩:是由A 的变化引起的.A >1,伸长;A <1,缩短.(2)横向伸缩:是由ω的变化引起的.ω>1,周期变小,故横坐标缩短;ω<1,周期变大,故横坐标伸长.(3)横向平移:是由φ的变化引起的.?>0,左移;?<0,右移. (法则:左+右-)说明:上述3种变换的顺序可以是任意的,特别注意,在进行横向平移时考虑x 前的系数,比如cos 2y x =向右平移3π个单位,应得到2cos 2()cos(2)33y x x ππ=-=-的图象 例 描述如何由sin y x =的图像得到3sin(2)4y x π=-的图像。
例 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x =C.)42sin(1π++=x y D.22sin y x =例 已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x xϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度例 若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为A .16B.14 C. 13D.12练习1.函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为2.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是3.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向 平移 个单位5.已知函数()sin()(,0)4f x x x R πωω=+∈>的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A 2πB 83πC 4πD 8π6.将函数()3sin f x x x =-的图象向左平移 m (m > 0)个单位,所得到的图象关于 y 轴对称,则 m 的最小正值是 ( )A. ?6B. ?3 C. 2?3 D. 5?67.若函数()θ+=x y sin 2的图象向右平移6π个单位后,它的一条对称轴是4π=x ,则θ的一个可能的值是A .125πB .3πC .6πD .12π七.识图问题例 已知函数()sin()(,0,||)2f x A x A πωφωφ=+><的图像如图所示,则712f π⎛⎫= ⎪⎝⎭。