4、机器人静力学
- 格式:pdf
- 大小:263.78 KB
- 文档页数:30
机器人静力学动力学和运动学的关系
机器人静力学动力学和运动学是机器人学的基础课程,它们组成了机器人系统的核心技术理念。
机器人的设计和操作的的前提是,对机器人的运动学准确理解、识别和控制。
静力学是关于探测并分析机器人机构在给定载荷和速度情况下的内部力和外部力的研究,是问动力学和运动学问题的关键课程。
静力学分析将机械设计中所涉及的每一块部件的物理定位、定位精度和力学性能都正确的刻画出来。
它的结果对驱动系统和控制系统的规划、设计和把握机械系统的运动有重要的作用。
动力学是研究机械系统的运动轨迹的学科,主要应用于机械系统运动学的研究,包括系统运行过程中的受力、受力状态、动力以及动力如何作用于机械系统等。
动力学分析有助于优化计算机机械系统的动作不仅能够满足性能要求,而且还能满足动力要求,保证机械系统在运动状态时能够顺畅而又安全地完成动作。
运动学是研究机械系统如何运动的学科,通过对机械系统各个部件的角度位置、插值、运动速度的实时控制、位置控制以及运动控制等实现机械系统的目标姿态,其结果构成了机械系统最优的运动,可以实现高效的动作给机器人的运动提供强有力的支持。
机器人静力学动力学和运动学的关系如何?从宏观上看,静力学作为机器人系统的基础,分析了机械系统内部每一块部件的物理定位、定位精度和力学性能;动力学作为对机器系统运动学的研究而深入探索;而运动学直接负责调整机器人的运动,帮助机器人实现最优的姿态,实现高效的动作。
因此,机器人静力学、动力学和运动学三者有着紧密的联系,其共同完成了机器人系统的构建和动作感知控制。
第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。
试论述机器人静力学、动力学、运动学的关系。
静力学、动力学和运动学是机器人学中的三大重要分支,也是机器人机械系统设计和分析的基础。
它们之间具有千丝万缕的联系,彼此间互相依赖。
首先,让我们来看一下静力学。
静力学是研究机器人静止物体,尤其是机器人结构的运动学性质的一门学科,是分析机器人结构内力、力矩、力矩惯性矩阵并确定机器人所处的动力学状态的研究对象。
它主要研究包括机械系统的结构分析、运动学分析、力学模型建立、力学计算等,并在此基础上为动力学分析和机械动力学分析提供有力的依据。
其次,动力学是研究机器人在实际环境中的运动过程的一门学科。
动力学研究的基础是静力学,它考察机器人结构在其运动过程中会受到的外力和内力;不同类型的外力会造成机器人总体运动有所不同,但机械系统本质上也具有力学性质,所以运动特性的研究依赖于动力学以及机器人结构的力学属性。
最后,运动学可以被定义为研究在静力学的基础上运动物体末端相对位姿和状态的研究。
它主要是分析机器人结构的全局位置变换、及其所服从的动力学控制。
它通过对机器人运动路径及时间建模和控制,从而实现相应的机器人系统功能。
第四章静力学和刚度分析(部分)4.1 引言本章研究并联机器的静力学和刚度。
机器工作时,末端执行器必然要对外界施加一定的力和力矩,而这些均由关节来提供。
对于串联机器,驱动力通过一个开环运动链传递;对于并联机器,驱动力通过几个并联路径传递到末端执行器。
它们的研究方法有一定的不同。
机器的静力学是在假设机器不发生运动时,研究各关节和末端执行器所承受的力和力矩之间的关系,包括大小和方向。
静力学分析对确定机器各构件和轴承的尺寸,以及确定合适的驱动器是必需的,是机器人柔顺控制(compliance control)的基础。
本章中,为简化描述,我们使用关节力和操作力这样的术语来表示关节和终端上的力和力矩。
机器静力学分析的方法有多种,包括矢量法、虚功原理、螺旋代数和四元数等。
矢量法又称为Chace方法,针对机器的每个构件,建立隔离体图和静力平衡方程,然后统一求解。
虚功原理是基于能量转换的方法,在并联机器的研究中应用非常广泛。
本章重点介绍基于矢量法和虚功原理的静力学分析。
另外,在探讨操作力与关节力之间的关系时,必须考虑各构件受力和变形的关系,因为如果构件变形过大将导致机器性能变坏。
终端和关节的受力与变形之间的关系属于机器的刚度分析范畴,这也是本章重要内容之一。
本章首先介绍机器人静力学分析的一些基础知识,包括:构件隔离体图和静力平衡方程,基于不同坐标系下的构件静力平衡方程,基于虚功原理的静力学分析方法,刚度矩阵和柔度矩阵。
在随后的并联机器静力学分析部分,应用矢量法和虚功原理对两种不同构型的机器进行了静力学分析。
在刚度分析部分,我们首先介绍只考虑系统驱动误差的刚度矩阵的求解;然后重点介绍目前应用非常广泛的用于刚度分析的有限元方法,并且针对几台实际的并联机器,给出了具体的建模和求解过程,并提供了大量的实验数据和分析结论,这些数据对设计和建造该类并联机器具有很好的参考价值。
4.2 静力学和刚度分析基础这一部分主要介绍机器人静力学和刚度分析的一些基础方法和概念,包括,机构的隔离体图,静力平衡方程,基于不同坐标系的构件静力平衡方程,虚功原理,刚度和柔度矩阵。
机器人静力学,动力学,运动学的关系
机器人的静力学、动力学和运动学是机器人技术研究中三个重要领域,它们之间存在
着相互关联,协同工作,构成了机器人技术的核心。
首先,机器人静力学是指机器人操作过程中机械结构在不变的平衡状态下运动学位置
及实时运动状态估计分析,被誉为机器人外部力分析和内力传递分析的基础学科。
它主要
通过建立机器人机械结构模型,利用关节形变、外力以及内力等物理变量,计算求解机器
人的内外力特性、机构的端部间的平衡、受力特性、稳定性及物体约束特性等。
其次,机器人动力学是指机器人的运动发生时,所做动力学建模、分析及控制的研究,因此它探讨的是关节力学、碰撞识别等方面的有关问题,它主要是要求在运动过程中求解
系统运动参数或者特征值,实现机器人动态分析与控制,研究动力学模型对机器人系统动
态性能的影响。
最后,机器人运动学是指动作规划及机器人运动控制之间相关问题的研究,通过研究
机器人通过方向轮,电机和关节的作用实现有用运动的方法,涉及关节角度、运动轨迹、
几何关系、姿态成份的工程化方法。
它是对机器人机械结构分析和动力学建模的补充,探
讨机器人各关节及机构动作之间相互关系,以及机器人运动要求下,机器人运动解的计算
及实现方法,使得机器人拥有大量的姿态组合,增加机器人的全局适应性。
由此可以看出,机器人的静力学、动力学和运动学形成了一个完整的研究体系,它们
相互交织,共同工作,它们提供了对机器人运动的有效把握,从而实现机器人的运动目标。
因此,机器人的静力学、动力学和运动学十分重要,它们是实现机器人运动控制的基础,
也将在机器人研究中发挥重要作用。
雅可比矩阵在机器人静力学中的作用雅可比矩阵在机器人静力学中扮演了关键的角色,它用于描述机器人系统中的运动学和动力学关系。
下面我将逐个回答你的问题,并用易于理解的术语解释。
1. 雅可比矩阵是什么雅可比矩阵是一个将机器人的关节速度与其末端执行器速度之间的关系进行描述的矩阵。
它将机器人关节空间中的速度转化为末端执行器空间中的速度。
雅可比矩阵的每个元素代表了末端执行器速度对于关节速度的敏感程度。
2. 机器人的静力学是什么机器人的静力学研究的是机器人系统在静止或匀速运动时所受到的力学影响。
它关注的是机器人系统在特定关节角度下的受力情况,包括关节力和末端执行器力等。
3. 雅可比矩阵在机器人静力学中的作用是什么雅可比矩阵在机器人静力学中的作用是用于分析机器人系统中的力学平衡和力的传递。
通过雅可比矩阵,我们可以将末端执行器的力转化为关节力,并且可以控制机器人系统中的力分配。
4. 如何利用雅可比矩阵进行力的传递分析在机器人静力学中,我们可以利用雅可比矩阵来分析力的传递和分布。
具体而言,我们可以通过雅可比矩阵将末端执行器上的力转化为关节空间中的力。
这样,我们可以对机器人系统进行力分析,包括力矩的计算和力的传递路径的分析等。
5. 为何需要力的传递分析力的传递分析对于机器人的应用非常重要。
它可以帮助我们理解机器人系统中的力分配情况,从而进行力控制和路径规划等。
通过力的传递分析,我们可以确定机器人系统中各个部分所受到的力,以及力的传递路径是否满足设计要求。
总结起来,雅可比矩阵在机器人静力学中的作用是描述机器人系统中的运动学和动力学关系。
它帮助我们分析机器人系统中的力学平衡和力的传递,从而进行力控制和路径规划等。
通过雅可比矩阵的应用,我们可以将末端执行器的力转化为关节力,并且可以确定机器人系统中各个部分所受到的力,从而进行力的传递分析。
这对于机器人的应用非常重要,能够帮助我们优化机器人的设计和控制,提高其性能和安全性。
(二)简答题1.智能机器人的所谓智能的表现形式是什么?答:推理判断、记忆2.机器人分为几类?答:首先,机器人按应用分类可分为工业机器人、极限机器人、娱乐机器人。
1)工业机器人有搬运、焊接、装配、喷漆、检验机器人,主要用于现代化的工厂和柔性加工系统中。
2)极限机器人主要是指用在人们难以进入的核电站、海底、宇宙空间进行作业的机器人,包括建筑、农业机器人。
3)娱乐机器人包括弹奏机器人、舞蹈机器人、玩具机器人等。
也有根据环境而改变动作的机器人。
其次,按照控制方式机器人可分为操作机器人、程序机器人、示教机器人、智能机器人和综合机器人。
3. 机器人由哪几部分组成?机器人由三大部分六个子系统组成。
三大部分是机械部分、传感部分和控制部分。
六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。
4. 什么是自由度?答:人们把构建相对于参考系具有的独立运动参数的数目称为自由度。
5. 机器人技术参数有哪些?各参数的意义是什么?答:机器人技术参数有:自由度、精度、工作范围、速度、承载能力1)自由度:是指机器人所具有的独立坐标轴的数目,不包括手爪(末端操作器)的开合自由度。
在三维空间里描述一个物体的位置和姿态需要六个自由度。
但是,工业机器人的自由度是根据其用途而设计的,也可能小于六个自由度,也可能大于六个自由度。
2)精度:工业机器人的精度是指定位精度和重复定位精度。
定位精度是指机器人手部实际到达位置与目标位置之间的差异。
重复定位精度是指机器人重复定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示,它是衡量一列误差值的密集度(即重复度)。
3)工作范围:是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。
4)速度;速度和加速度是表明机器人运动特性的主要指标。
5)承载能力:是指机器人在工作范围内的任何位姿上所能承受的最大质量。
承载能力不仅取决于负载的质量,而且还与机器人运行的速度和加速度的大小和方向有关。
机器人静力学,动力学,运动学的关系机器人静力学、动力学和运动学是机器人研究领域的三个重要分支。
它们相互交叉,彼此受益,共同构成了机器人技术的完整体系。
静力学,又称静态学,是研究物体在力学作用下的运动状态和形状变化的学科。
静力学的概念先由古希腊哲学家亚里士多德提出,是研究物体在力学作用下其位置改变和力学状态的学科,它是机器人学的基础理论,它可以帮助我们了解机器人的结构装配、控制方式、总体运动规律及机器人的力学响应等。
动力学是研究物体动力运动的活动特性及受力特性的学科,其主要研究内容是计算物体运动的轨迹、受力特性和作用力等。
它是机器人技术重要的理论基础,可以用来设计机器人运动控制系统,例如驱动机构控制、坐标系变换和轨迹规划等,帮助提高机器人的运动性能和精度。
机器人运动学是研究机器人运动空间及运动规律的学科,其主要研究内容包括机器人的轨迹定义、关节运动学、反向运动学等,它可以帮助分析机器人系统的性能、识别机器人的失效原因,为机器人运动控制设计提供理论支撑。
机器人静力学、动力学和运动学紧密相互联系,它们是机器人技术的三个重要分支。
静力学可以提供机器人的运动规律,动力学则提供机器人从静态到动态运动的转归,运动学可以分析机器人的运动规律。
由于三者相互交叉,彼此受益,它们共同构成了机器人技术的完整体系。
机器人静力学、动力学和运动学的研究不断发展,它们在各种领域的应用也在不断拓展,如机器人制造、积木机器人、服务机器人、智能机器人等,其作用日益凸现。
未来,编程、控制、传感等设计将继续优化,将有助于构建更加完善可靠的系统、更加灵活多样的机器人。
总之,机器人静力学、动力学和运动学之间有着密不可分的联系,它们共同构成了一个完整的机器人技术体系。
随着未来机器人技术的发展,它们将发挥更大的作用,为人类更多的工作和生活带来更多的便利。
机器人静力学、动力学、运动学的关系
机器人静力学、动力学、运动学关系的研究是机器人的重要方向。
在物理学和机械工程领域,静力学、动力学和运动学是所研究内容的三大运动类科学,它们都是分析机器人的重要工具。
静力学是由斯特拉森于1847年创立的科学,用于分析机器人的力和运动条件,包括结构、几何形状、约束、重量等参数,通过分析得出机器人的运动方程及相关系数。
动力学是文德斯于1903年创立的科学,是利用牛顿力学解决机器人运动学问题的方法,可以根据静力学分析得出来的机器人结构和参数,实现求出机器人的运动参数,如移动轨迹、运动速度、加速度和旋转角度等。
运动学是根据动力学的原理描述机器人的姿态和运动特性的科学,可以用算法建模去模拟机器人的运动轨迹,以及基于视觉、惯性测量等感知系统,实时估计机器人的位姿,计算其在运动时合适的力和速度参数。
机器人静力学、动力学和运动学的研究是研究机器人的基础。
从理论上讲,静力学和动力学的研究可以为机器人提供自然环境下的运动算法,运动学则可以针对特定环境中的机器人进行更精确的解析,从而让机器人的运动更加准确、稳定和可控。
综上所述,我们可以得出总结:机器人静力学、动力学和运动学是机器人研究中不可割舍的重要组成部分,它们分析机器人的运动参数及相关力,为机器人运动提供重要的技术支撑,是实现精确、稳定的机器人运动的坚实基础。