第2章 机器人静力分析与动力学
- 格式:ppt
- 大小:1.60 MB
- 文档页数:48
第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。
试论述机器人静力学、动力学、运动学的关系。
静力学、动力学和运动学是机器人学中的三大重要分支,也是机器人机械系统设计和分析的基础。
它们之间具有千丝万缕的联系,彼此间互相依赖。
首先,让我们来看一下静力学。
静力学是研究机器人静止物体,尤其是机器人结构的运动学性质的一门学科,是分析机器人结构内力、力矩、力矩惯性矩阵并确定机器人所处的动力学状态的研究对象。
它主要研究包括机械系统的结构分析、运动学分析、力学模型建立、力学计算等,并在此基础上为动力学分析和机械动力学分析提供有力的依据。
其次,动力学是研究机器人在实际环境中的运动过程的一门学科。
动力学研究的基础是静力学,它考察机器人结构在其运动过程中会受到的外力和内力;不同类型的外力会造成机器人总体运动有所不同,但机械系统本质上也具有力学性质,所以运动特性的研究依赖于动力学以及机器人结构的力学属性。
最后,运动学可以被定义为研究在静力学的基础上运动物体末端相对位姿和状态的研究。
它主要是分析机器人结构的全局位置变换、及其所服从的动力学控制。
它通过对机器人运动路径及时间建模和控制,从而实现相应的机器人系统功能。
机器人运动学与动力学分析引言:机器人技术是当今世界的热门话题之一。
从生产领域到服务领域,机器人的应用越来越广泛。
而要实现机器人的精确控制和高效运动,机器人运动学与动力学分析是必不可少的基础工作。
本文将介绍机器人运动学与动力学分析的概念、方法和应用,并探讨其在现代机器人技术中的重要性。
一、机器人运动学分析机器人运动学分析是研究机器人运动的位置、速度和加速度等基本特性的过程。
运动学分析主要考虑的是机器人的几何特征和相对运动关系,旨在通过建立数学模型来描述机器人的运动路径和姿态。
运动学分析通常可以分为正逆解两个方面。
1. 正解正解是指根据机器人关节位置和机构参数等已知信息,计算出机器人末端执行器的位置和姿态。
正解问题可以通过利用坐标变换和关节运动学链式法则来求解。
一般而言,机器人的正解问题是一个多解问题,因为机器人通常有多个位置和姿态可以实现。
2. 逆解逆解是指根据机器人末端执行器的位置和姿态,计算出机器人关节位置和机构参数等未知信息。
逆解问题通常比正解问题更为复杂,因为存在多个解或者无解的情况。
解决逆解问题可以采用迭代法、几何法或者数值优化方法。
二、机器人动力学分析机器人动力学分析是研究机器人运动的力学特性和运动控制的基本原理的过程。
动力学分析主要考虑机器人的力学平衡、力学约束和运动方程等问题,旨在实现机器人的动态建模和控制。
1. 动态建模动态建模是研究机器人在外力作用下的力学平衡和运动约束的数学描述。
通过建立机器人的运动方程,可以分析机器人的惯性特性、静力学特性和动力学特性。
机器人的动态建模是复杂的,需要考虑关节惯性、关节力矩、摩擦因素等多个因素。
2. 控制策略机器人动力学分析的另一个重要应用是运动控制。
根据机器人的动态模型,可以设计控制策略来实现机器人的精确运动。
常见的控制方法包括PID控制、模糊控制、自适应控制等。
通过合理选择控制策略和调节参数,可以实现机器人的平滑运动和高精度定位。
三、机器人运动学与动力学分析的应用机器人运动学与动力学分析在现代机器人技术中具有重要的应用价值。
机械工程中的机器人运动学与动力学分析导言机器人在现代社会中扮演着越来越重要的角色,其用途广泛涉及到制造业、医疗保健、航空航天等领域。
机器人的精确控制是实现其高效工作的关键,而机器人运动学与动力学分析则是实现这一目标的重要基础。
本文将介绍机器人运动学与动力学分析的基本概念、方法以及应用。
一、机器人运动学分析1. 运动学基础概念机器人的运动学分析研究的是机器人末端执行器的位置、速度和加速度之间的关系。
其中,位置由笛卡尔坐标系或关节坐标系表示,速度和加速度则是位置随时间的变化率。
为了进行运动学分析,我们需要定义机器人的关节坐标系以及各个关节之间的相对位置和方向关系。
2. 正解与逆解机器人运动学分析中,正解和逆解是两个重要的概念。
正解是指根据机器人各个关节的位置和方向关系,求解末端执行器的位置、速度和加速度。
逆解则是根据末端执行器的位置、速度和加速度,求解各个关节的位置和方向关系。
3. 运动学分析方法运动学分析方法主要有几何法和代数法两种。
几何法通过几何图形和三角学原理,求解机器人的运动学问题。
代数法则依赖于符号表示和运算,通过建立关节变量和末端执行器之间的方程组,求解运动学问题。
二、机器人动力学分析1. 动力学基础概念机器人的动力学分析研究的是机器人运动时所受到的力和力矩,以及这些力和力矩对机器人运动的影响。
力和力矩是机器人在进行任务时所受到的外部作用,也可能是机器人自身组件之间的相互作用。
2. 动力学建模机器人动力学分析中,需要对机器人进行建模。
建立机器人的动力学模型是研究机器人运动的关键环节。
通常,我们使用拉格朗日方程对机器人进行建模,该方程能够描述机器人系统的动力学行为。
3. 动力学分析方法动力学分析方法主要有牛顿-欧拉法和拉格朗日法两种。
牛顿-欧拉法通过牛顿定律和欧拉角动量定理,推导出机器人各个关节的力和力矩。
而拉格朗日法则通过计算机器人系统的动能和势能,得到机器人的运动方程。
三、机器人运动学与动力学分析的应用1. 机器人轨迹规划机器人的轨迹规划是指根据任务要求,确定机器人末端执行器的运动轨迹。