机器人静力学与动力学
- 格式:ppt
- 大小:953.50 KB
- 文档页数:10
试论述机器人静力学,动力学,运动学的关系
机器人学是一门研究机器人的运动、力学和控制的学科。
其中,机器人的静力学、动力学和运动学是机器人学中的三个重要分支,它们之间存在着密不可分的关系。
静力学是研究机器人在静止状态下的力学特性,主要包括机器人的力学结构、质心位置、静态稳定性等。
在机器人的设计和控制中,静力学是非常重要的,因为只有在机器人的静态稳定性得到保证之后,机器人才能进行安全和可靠的运动。
静力学的研究成果,可以为机器人的控制系统提供重要的参考依据。
动力学是研究机器人在运动状态下的力学特性,主要包括机器人的动力结构、速度、加速度、惯性等。
在机器人的控制和规划中,动力学是一个非常重要的研究方向,因为只有了解机器人的动态特性,才能更加有效地控制机器人的运动。
动力学的研究成果,可以为机器人的控制系统和运动规划提供重要的参考依据。
运动学是研究机器人运动的几何特性和空间关系的学科,主要包括机器人的位置、朝向、运动轨迹等。
在机器人的控制和规划中,运动学是非常重要的研究方向,因为只有了解机器人的运动特性,才能更加有效地控制机器人的运动。
运动学的研究成果,可以为机器人的运动规划和控制系统提供重要的参考依据。
综上所述,机器人的静力学、动力学和运动学之间存在着密不可分的关系。
在机器人的设计、控制和运动规划中,这三个分支相互作用,相互影响,共同推动了
机器人技术的不断发展。
机器人静力学,动力学,运动学的关系
机器人的静力学、动力学和运动学是机器人技术研究中三个重要领域,它们之间存在
着相互关联,协同工作,构成了机器人技术的核心。
首先,机器人静力学是指机器人操作过程中机械结构在不变的平衡状态下运动学位置
及实时运动状态估计分析,被誉为机器人外部力分析和内力传递分析的基础学科。
它主要
通过建立机器人机械结构模型,利用关节形变、外力以及内力等物理变量,计算求解机器
人的内外力特性、机构的端部间的平衡、受力特性、稳定性及物体约束特性等。
其次,机器人动力学是指机器人的运动发生时,所做动力学建模、分析及控制的研究,因此它探讨的是关节力学、碰撞识别等方面的有关问题,它主要是要求在运动过程中求解
系统运动参数或者特征值,实现机器人动态分析与控制,研究动力学模型对机器人系统动
态性能的影响。
最后,机器人运动学是指动作规划及机器人运动控制之间相关问题的研究,通过研究
机器人通过方向轮,电机和关节的作用实现有用运动的方法,涉及关节角度、运动轨迹、
几何关系、姿态成份的工程化方法。
它是对机器人机械结构分析和动力学建模的补充,探
讨机器人各关节及机构动作之间相互关系,以及机器人运动要求下,机器人运动解的计算
及实现方法,使得机器人拥有大量的姿态组合,增加机器人的全局适应性。
由此可以看出,机器人的静力学、动力学和运动学形成了一个完整的研究体系,它们
相互交织,共同工作,它们提供了对机器人运动的有效把握,从而实现机器人的运动目标。
因此,机器人的静力学、动力学和运动学十分重要,它们是实现机器人运动控制的基础,
也将在机器人研究中发挥重要作用。
注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析3.1 引言在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。
由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。
要对工业机器人进行合理的设计和性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。
在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。
在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。
工业机器人作业时,在工业机器人和环境之间存在着相互作用力。
外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。
假定工业机器人各关节“锁住”,关节的“锁定用”力和外界环境施加给手部的作用力取得静力学平衡。
工业机器人静力学就是分析手部上的作用力和各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。
关节的驱动力和手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。
工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。
(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。
研究工业机器人动力学的目的是多方面的。
动力学正问题对工业机器人运动仿真是非常有用的。
动力学逆问题对实现工业机器人实时控制是相当有用的。
利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。
工业机器人动力学模型主要用于工业机器人的设计和离线编程。
在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。
机器人静力学,动力学,运动学的关系机器人静力学、动力学和运动学是机器人研究领域的三个重要分支。
它们相互交叉,彼此受益,共同构成了机器人技术的完整体系。
静力学,又称静态学,是研究物体在力学作用下的运动状态和形状变化的学科。
静力学的概念先由古希腊哲学家亚里士多德提出,是研究物体在力学作用下其位置改变和力学状态的学科,它是机器人学的基础理论,它可以帮助我们了解机器人的结构装配、控制方式、总体运动规律及机器人的力学响应等。
动力学是研究物体动力运动的活动特性及受力特性的学科,其主要研究内容是计算物体运动的轨迹、受力特性和作用力等。
它是机器人技术重要的理论基础,可以用来设计机器人运动控制系统,例如驱动机构控制、坐标系变换和轨迹规划等,帮助提高机器人的运动性能和精度。
机器人运动学是研究机器人运动空间及运动规律的学科,其主要研究内容包括机器人的轨迹定义、关节运动学、反向运动学等,它可以帮助分析机器人系统的性能、识别机器人的失效原因,为机器人运动控制设计提供理论支撑。
机器人静力学、动力学和运动学紧密相互联系,它们是机器人技术的三个重要分支。
静力学可以提供机器人的运动规律,动力学则提供机器人从静态到动态运动的转归,运动学可以分析机器人的运动规律。
由于三者相互交叉,彼此受益,它们共同构成了机器人技术的完整体系。
机器人静力学、动力学和运动学的研究不断发展,它们在各种领域的应用也在不断拓展,如机器人制造、积木机器人、服务机器人、智能机器人等,其作用日益凸现。
未来,编程、控制、传感等设计将继续优化,将有助于构建更加完善可靠的系统、更加灵活多样的机器人。
总之,机器人静力学、动力学和运动学之间有着密不可分的联系,它们共同构成了一个完整的机器人技术体系。
随着未来机器人技术的发展,它们将发挥更大的作用,为人类更多的工作和生活带来更多的便利。