数控铣削加工工艺分析
- 格式:doc
- 大小:74.50 KB
- 文档页数:5
62数控铣床加⼯⼯艺分析6.2数控铣床加⼯⼯艺分析6.2.1数控铣床加⼯零件的⼯艺性分析在选择并决定数控铣床加⼯零件及其加⼯内容后,应对零件的数控铣床加⼯⼯艺性进⾏全⾯、认真、仔细的分析。
主要内容包括产品的零件图样分析、零件结构⼯艺性分析与零件⽑坯的⼯艺性分析等内容。
1.零件图⼯艺分析⾸先应熟悉零件在产品中的作⽤、位置、装配关系和⼯作条件,搞清楚各项技术要求对零件装配质量和使⽤性能的影响,找出主要的和关键的技术要求,然后对零件图样进⾏分析。
针对数控铣削加⼯的特点,下⾯列举出⼀些经常遇到的⼯艺性问题作为对零件图进⾏⼯艺性分析的要点来加以分析与考虑。
(1)图样尺⼨的标注⽅法是否⽅便编程?构成⼯件轮廓图形的各种⼏何元素的条件是否充要?各⼏何元素的相互关系(如相切、相交、垂直和平⾏等)是否明确?有⽆引起⽭盾的多余尺⼨或影响⼯序安排的封闭尺⼨?等等。
(2)零件尺⼨所要求的加⼯精度、尺⼨公差是否都可以得到保证?不要以为数控机床加⼯精度⾼⽽放弃这种分析。
特别要注意过薄的腹板与缘板的厚度公差,“铣⼯怕铣薄”,数控铣削也是⼀样,因为加⼯时产⽣的切削拉⼒及薄板的弹性退让,极易产⽣切削⾯的振动,使薄板厚度尺⼨公差难以保证,其表⾯粗糙度也将恶化或变坏。
根据实践经验,当⾯积较⼤的薄板厚度⼩于3mm时就应充分重视这⼀问题。
(3)内槽及缘板之间的内转接圆弧是否过⼩?(4)零件铣削⾯的槽底圆⾓或腹板与缘板相交处的圆⾓半径r是否太⼤?(5)零件图中各加⼯⾯的凹圆弧(R与r)是否过于零乱,是否可以统⼀?因为在数控铣床上多换⼀次⼑要增加不少新问题,如增加铣⼑规格、计划停车次数和对⼑次数等,不但给编程带来许多⿇烦,增加⽣产准备时间⽽降低⽣产效率,⽽且也会因频繁换⼑增加了⼯件加⼯⾯上的接⼑阶差⽽降低了表⾯质量。
所以,在⼀个零件上的这种凹圆弧半径在数值上的⼀致性问题对数控铣削的⼯艺性显得相当重要。
⼀般来说,即使不能寻求完全统⼀,也要⼒求将数值相近的圆弧半径分组靠拢,达到局部统⼀,以尽量减少铣⼑规格与换⼑次数。
于从诸多风动机械零件实际加工中精选典型的案例,来介绍数控铣床加工工艺所涉及的工艺性分析、加工工艺、安装定位、刀具应用及典型零件加工的基础知识任务一数控铣削加工工艺任务目标◇会分析简单零件的加工工艺;◇会划分简单零件的加工工序;◇能确定零件定位及装夹方法;◇能确定简单零件的走刀路线;◇会选择合理的加工刀具和切削用量;◇会编写加工工艺卡;任务内容如果要加工下图所示活塞式空压机曲轴箱,数控铣床加工工艺准备工作步骤是什么?活塞式空压机曲轴箱一、加工工艺分析1.零件图的分析分析项目分析内容尺寸标注方法分析注意基准统一原则,减少累积误差。
零件图的完整性与正确性分析几何图素条件要求充分。
零件技术要求分析尺寸精度、形状精度、位置精度、表面粗糙度、热处理等都会影响工艺方案。
同时考虑安装、刀具、切削用量。
零件材料分析材料影响价格、切削用量、工艺方案。
零件图形的数学处理计算出几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值。
尺寸链的计算。
2.零件的结构工艺性分析(1)采用统一的几何类型和尺寸,减少换刀,提高效率,减少成本。
(2)零件的工艺结构设计应确保能采用较大直径的刀具进行加工。
采用大直径铣刀加工,能减少加工次数,提高表面加工质量。
内槽圆角影响刀具的选择,应大些,如图5-1所示。
图5-1知识链接(3)当铣刀直径D一定时,圆角半径r越大,铣刀端刃铣削平面的面积就越小,铣刀端刃铣削平面的能力就越差,效率越低,工艺性也越差。
所以槽底圆角半径r不宜太大,如图5-2所示。
(4)统一基准定位,减少定位误差。
(5)减少刀具数量,降低成本和减少定位误差。
图5-2(6)审查与分析定位基准的可靠性。
(7)对于薄壁件、刚性差的零件,注意加强零件加工部位的刚性,防止变形的产生。
(8)分析毛坯余量的大小及均匀性。
二、数控加工工艺过程设计1.加工工序的划分(1)刀具集中分序法按所用刀具划分工序,用同一把刀具加工完所有可以加工的部位,再用第二、三把刀完成它们可以完成的其他部位。
数控铣削加工工艺范围及铣削方式铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。
铣削的主要工作及刀具与工件的运动形式如图所示。
在铣削过程中,根据铣床,铣刀及运动形式的不同可将铣削分为如下几种:(1)根据铣床分类根据铣床的结构将铣削方式分为立铣和卧铣.由于数控铣削一个工序中一般要加工多个表面,所以常见的数控铣床多为立式铣床。
(2)根据铣刀分类根据铣刀切削刃的形式和方位将铣削方式分为周铣和端铣.用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6—2(a)所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6—2(b)所示。
图中平行于铣刀轴线测量的切削层参数ap为背吃刀量.垂直于铣刀轴线测量的切削层参数ac为切削宽度,fz是每齿进给量.单独的周铣和端铣主要用于加工平面类零件,数控铣削中常用周、端铣组合加工曲面和型腔。
(3)根据铣刀和工件的运动形式公类根据铣刀和工作的相对运动将铣削方式分为顺铣和逆铣。
铣削时,铣刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6—3)a 所示;铣削时,铣刀切入工件时的切削速度方向与工件进给方向相反,称为逆铣,如图(6-3)b所示。
顺铣与逆铣比较:顺铣加工可以提高铣刀耐用度2~3倍,工件表面粗糙度值较小,尤其在铣削难加工材料时,效果更加明显。
铣床工作台的纵向进给运动一般由丝杠和螺母来实现,采用顺铣法加工时,对普通铣床首先要求铣床有消除进给丝杠螺母副间隙的装置,避免工作台窜动;其次要求毛坯表面没有破皮,工艺系统有足够的刚度。
如果具备这样的条件,应当优先考虑采用顺铣,否则应采用逆铣.目前生产中采用逆铣加工方式的比较多。
数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工.数控铣削主要特点(1)生产率高(2)可选用不同的铣削方式(3)断续切削(4)半封闭切削数控铣削主要加工对象(1)平面类零件加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件.目前,在数控铣床上加工的绝大多数零件属于平面类零件。
数控铣床零件加工工艺分析与程序设计毕业论文数控铣床是一种用数控技术控制刀具在工件上进行铣削加工的设备。
在数控铣床零件加工过程中,合理的工艺分析和程序设计对于保证加工精度和提高加工效率至关重要。
本文将以数控铣床零件加工工艺分析与程序设计为研究内容,分析其重要性并提出相应的设计方法。
首先,工艺分析对于数控铣床零件加工至关重要。
工艺分析是指通过对零件特点、材料性能等进行分析,确定合理的加工方法和加工工艺参数。
在数控铣床零件加工过程中,不同的零件要求不同的加工方法和参数,只有通过工艺分析才能确定最佳的加工工艺路线和参数,以保证零件的加工质量和效率。
工艺分析还可以提前预测可能出现的问题,如加工难度较大的区域、切削力较大的位置等,从而采取相应的措施,保证加工的顺利进行。
其次,程序设计是数控铣床零件加工的核心环节。
程序设计是指根据工艺分析的结果,编写数控程序,以实现对数控铣床的控制。
程序设计的质量直接影响加工结果,良好的程序设计可以提高加工精度和效率。
在程序设计过程中,需要根据零件的几何形状、尺寸和加工要求,确定数控刀具的刀补和补偿方案,编写合理的切削路径和切削轨迹,以保证零件的尺寸精度和表面质量。
此外,程序设计还需要考虑加工过程中可能出现的问题,如加工力的控制、材料的选择等,以提高加工的效率和稳定性。
在数控铣床零件加工工艺分析与程序设计过程中,可以采取以下方法:1.对零件进行全面的分析。
包括几何形状、尺寸、材料特性等方面的分析,确定加工目标和要求。
2.根据零件的特点和加工目标,选择合适的加工方法和加工工艺参数。
如铣床的进给速度、主轴转速、切削进给量等。
3.根据工艺分析结果,编写数控程序。
程序要考虑到零件的几何形状、加工道具的特点和刀具的路径。
4.在程序设计过程中,需要进行模拟实验和试加工。
通过试验和实际加工,检验程序的准确性和可行性。
5.对程序进行评估和调整。
根据试加工和实际情况,对程序进行调整和改进,以提高加工效率和质量。
数控加工零件的工艺分析与数控铣削加工工艺数控加工是指利用计算机数控系统,通过编写程序控制机床工作来加工零件的一种加工方式。
在工业生产中,数控加工因其高精度、高效率、高灵活性等优点而被广泛应用。
其中数控铣削是一种常见的数控加工方式,本文将从工艺分析、数控铣削加工工艺等方面进行探讨。
一、数控加工零件的工艺分析工艺分析是数控加工的一项前置工作,它的目的是确定加工工艺,选择合适的加工设备和刀具,制定加工程序等,从而保证加工质量和效率。
具体而言,工艺分析主要包括以下几个方面:1. 零件的材质和形状:不同材质的加工性能不同,加工时需要选择相应的切削参数和刀具;而零件的形状和结构也会影响加工难度和精度,需要对其进行全面分析和评估。
2. 加工精度和表面质量要求:根据零件的要求,确定加工精度和表面质量目标,制定相应的切削参数和工艺措施。
3. 工序分析:对零件进行逐个工序分析,确定加工顺序、加工方向、加工路径和刀具选择等重要内容,同时把握好每个工序的加工质量和效率。
4. 刀具选择:根据加工材料、零件形状和要求,选择合适的刀具和刀具尺寸,保证零件的加工质量和加工效率。
5. 加工程序制定:通过数控编程软件,编写机床加工程序,包括各种切削参数、刀具路径、指令参数等信息,为数控加工提供参考。
二、数控铣削加工工艺数控铣削是一种高速旋转的刀具在工件表面上进行切削的加工方式,它广泛应用于金属、塑料等材料制件的加工中。
数控铣削在工件制作中具有大量价值和应用,且数控铣削加工工艺也是半自动化和自动化制造中的重要工艺之一。
要把好铣削的关,需要具备以下几点:1. 刀具选择:刀具的选择是影响加工效率和加工质量的重要因素之一。
首先需要考虑切削材料,选择高速钢、硬质合金、陶瓷等材质的刀具;其次要考虑刀具尺寸和形状,根据零件的要求选择合适的刀具。
2. 切削参数:切削参数包括切削速度、进给量和切削深度等,这些参数的选定与零件材料、刀具材料、刀具尺寸和表面质量等因素密切相关。
一、顺铣和逆铣1.周边铣削时的顺铣和逆铣(1)顺铣在铣刀与工件已加工面的切点处,铣刀旋转切削刃的运动方向与工件进给方向相同的铣削(图2-7a);当铣刀切削刃作用在工件上的力F在进给方向上的铣削分力Ff与工件的进给方向相同时的戏削方式称为顺铣(图2-7b)。
(2)逆铣在铣刀与工件已加工面的切点处,铣刀旋转切削刃的运动方向与工件进给方向相反的铣削(图2-8a);当铣刀切削刃作用在工件上的力F在进给方向上的分力Ff与工件进给方向相反时的铣削称为逆铣。
(图2-8b)图2-7顺铣图2-8逆铣2.端面铣削时的顺铣和逆铣端面铣削时,根据铣刀与工件之间的相对位置不同而分为对称铣削和非对称铣削两种。
(1)对称铣削工件处在铣刀中间时的铣削成为对称铣削(图29.铣削时,刀齿在工件的前半部分为逆铣,在进给方向的铣削分力Ff与进给方向相反。
刀齿在工件的后半部分为顺铣,Ff与进给方向相同。
图2-+9对称铣削时,在铣削层宽度较窄和铣刀齿数少的情况下,由于Ff在方向上的交替变化,故工件和工作台容易产生窜动。
另外,在横向的水平分力F。
较大,对窄长的工件易造成变形和弯曲。
所以,对称铣削只有在工件宽度接近铣刀直径时才采用。
(2)非对称铣削工件的铣削层宽度偏在铣刀一边时的铣削成为非对称铣削(图2-10),亦即铣刀中心与铣削层宽度的对称线处在偏心状态下的铣削。
非对称铣削时有顺铣和逆铣两种。
图2-101)非对称逆铣铣削时,逆铣部分占的比例大,在各个刀齿上的Ff之和,与进给方向相反(图2-10a),所以不会拉动工作台。
端面铣削时,切削刃切入工件虽由薄到厚,但不等于从零开始,因而没有像周边铣削时那样的缺点。
从薄处切入刀齿的冲击反而较小,故振动较小。
另外工件所受的垂直铣削梨Fv由与铣削方式无关。
因此在端面铣削时,应采用非对称逆铣。
2)非对称逆铣时,顺铣部分占的比例较大,在各个刀齿上的Ff之和,与进给方向相同(图2-10b),故易拉动工作台。
另外,垂直铣削力Fv又不因顺铣而一定向下。
数控铣削零件加工工艺设计及自动编程数控铣削是一种利用数控设备进行精密加工的方法。
它可以将图纸上的零件准确地加工成为实物。
在进行数控铣削加工时,需要对工艺进行设计并进行自动编程,以保证加工精度和效率。
一、工艺设计1. 零件分析在进行工艺设计之前,需要先对零件进行分析。
分析的主要目的是确定零件的加工形式以及加工顺序。
根据零件的材质、形状、尺寸和表面粗糙度等参数,确定最佳的加工策略。
2. 加工顺序在确定加工策略之后,需要根据操作工艺的要求以及零件的结构特点,确定加工的顺序。
常用的加工顺序包括:粗加工、半精加工、精加工、面加工等。
3. 工艺参数在加工零件时,需要设置一些工艺参数。
这些参数包括:切削速度、进给速度、切削深度等。
在进行数控铣削加工前,需要根据零件的具体要求进行设置,以确保加工精度和效率。
二、自动编程进行数控铣削加工时,需要通过自动编程的方法将加工路径和参数输入数控设备中。
具体步骤如下:1. 绘制零件的加工图在进行自动编程前,需要先绘制零件的加工图。
绘制时需要注意各部位的尺寸和位置关系。
2. 数控程序生成在绘制完成后,需要根据加工顺序以及加工路径进行数控程序的生成。
数控程序的生成一般分为两种方式:手动编程和自动编程。
手动编程需要对数控编程语言有一定的掌握,而自动编程则是利用专业的自动编程软件来生成数控程序。
3. 程序输入数控设备中程序生成后,需要将程序通过数据传输线缆或U盘等存储设备输入数控设备中。
在输入程序时,需要检查程序的正确性以及设备的状态,以确保加工过程的顺利进行。
总结:数控铣削是一种高精度的加工方法,其加工精度和效率受到工艺设计和自动编程的影响。
在进行数控铣削加工时,需要进行工艺设计并进行自动编程,以确保加工质量和工作效率。
数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
数控铣削加工工艺与编程数控铣削加工工艺是先进的金属加工方法之一,它通过计算机编程控制铣床进行精密切削工作,以生产出高精度、高质量的金属零部件。
本文主要讨论数控铣削加工工艺和编程相关的知识和技术。
一、数控铣削加工工艺1. 铣削加工工艺过程数控铣削加工工艺过程包括以下几个步骤:① 选择合适的材料和刀具,将工件和刀具夹紧在铣床上。
② 根据需要进行加工参数的预设和测试。
③ 设计刀具路径和切削参数,编写数控程序。
④ 启动数控系统,进行自动加工工作。
⑤ 完成后卸下零部件,进行质量检测和加工效果评估。
2. 铣床加工的切削参数数控铣床加工需要根据不同的材料、刀具和工件大小等要素,确定合适的切削参数。
常见的切削参数包括:① 切削速度:铣削加工时,刀具在工件表面移动时的速度,通常用米/分钟、英尺/分钟、英寸/分钟等单位表示。
② 进给速度:工件表面切割定量移动的速度,通常用每个齿口的距离表示,例如每分钟5毫米或每分钟0.2英寸。
③ 切削深度:刀具与工件表面之间的垂直距离,通常用米或英寸表示。
④ 切削角度:刀具与工件表面之间的斜角度数。
⑤ 切削力:在切削过程中对工件的力量,常用牛顿或磅表示。
3. 铣削加工的梳理方法铣削切削过程会产生切屑,不同的方法可以梳理它们以避免对加工造成影响。
常见的梳理方法包括:① 顺向梳理:切屑在与铣削方向平行的方向上梳理。
② 逆向梳理:切屑沿与铣削方向相反的方向梳理。
③ 中央梳理:将切削方向改为靠近工件中心的位置,即在工件的两侧同时进行铣削加工,将切削屑梳理到中央位置进行清理。
二、数控铣削加工编程1. 编程语言和软件数控铣削加工编程需要使用特定的编程语言和软件,如G代码和CAM软件。
G代码是用于数控铣削加工的标准指令语言,它包含了控制铣床加工参数和运动轴的指令。
CAM软件是一种计算机辅助制造软件,可以帮助设计师进行实体建模、刀路规划、程序生成等工作。
2. 数控铣削加工编程过程数控铣削加工编程过程需要遵循以下几个步骤:① 设计零部件,确定加工路径和切削参数。
(下转第53页)作者简介:千志科,主要研究方向:数控铣销加工工艺。
数控铣削加工工艺路线分析千志科,刘丽娜,吴文明(黄河交通学院,河南焦作454950)摘要:数控铣削加工工艺路线制定的合理与否对产品的加工精度、表面质量和加工效率影响很大,文章介绍了确定加工工艺路线的原则以及顺铣和逆铣的选择,从几个方面讨论了制定加工工艺路线时应注意的事项,为合理制定铣削加工工艺路线提供了参考。
关键词:数控铣削;工艺路线;顺铣;逆铣数控铣削加工工艺路线是指刀具(严格讲是刀位点)相对于被加工件的运动轨迹和方向。
即刀具由对刀点开始,到加工程序结束所经过的所有路径,包括切削加工的路径及刀具引入、返回等非切削空行程。
加工路线对铣削加工的表面质量、加工精度和加工效率等有直接的影响,所以加工路线安排的合理性显得至关重要。
1确定加工工艺路线的原则数控铣削加工路线制定时需参照的影响因素有很多,例如工件的轮廓形状、加工精度、材料类型、工件刚度、机床的类型、采用刀具的刚度等。
但在制定走刀路线时主要有以下三点原则:①优先保证工件的加工尺寸精度和表面质量。
②应尽量减小加工路线的路径长度,尤其是较少空行程占用的时间,以便提高铣削加工效率。
③最后,尽量简化数值计算,简化编程。
2数控铣削方式的选择根据铣削刀具的旋转方向和被加工工件的相对进给方向之间的相互关系,可以将数控铣削加工分为顺铣和逆铣两种。
顺铣是指刀具的切削速度方向与被加工工件的相对移动方向相同。
在刀具正转时,采用左刀补铣削就是顺铣。
顺铣的切削力以及切削变形相对较小,但却容易产生崩刃现象。
顺铣时,由于工作进给运动的方向与水平铣削力的方向一致,当刀齿对工件的作用力比较大时,因为工作台的丝杠与螺母之间的反向间隙存在,工作台就会产生一定量的窜动,这种情况不仅严重影响了铣削过程的平稳性,还会影响到被加工件的加工质量,如果窜动严重,还会损坏刀具。
所以欲采用顺铣时,首先要求数控铣床应具有间隙消除功能的机构,能可靠消除螺母与工作台传动丝杠的反向间隙,以消除铣削过程中产生的窜动。
目录
一、零件图的工艺分析
二、零件设备的选择
三、确定零件的定位基准和装夹方式
四、确定加工顺序及进给路线
五、刀具选择
六、切削用量选择
七、填写数控加工工艺文件
1、如图1所示,材料为45钢,单件生产,毛坯尺寸为
84mm×84mm×22mm),试对该零件的顶面和内外轮廓进行数控铣削加工工艺分析。
图1带型腔的凸台零件图
一零件图的工艺分析
1、图形分析
(1)分析零件图是否完整、正确,零件的视图是否正确、清楚,尺寸、公差、表面粗糙度及有关技术要求是否齐全、明确。
从上图可以看出该零件图的尺寸符合了这一要求。
(2)分析零件的技术要求,包括尺寸精度、形位公差、表面粗糙度及热处理是否合理。
过高的要求会增加加工难度,提高成本;过低的技术要求会影响工作性能,两者都是不允许的。
上图的精度为IT8级,技术要求和尺寸精度都能满足加工要求。
(3)该零件图上的尺寸标注既满足了设计要求,又便于加工,各图形几何要素间的相互关系(相切、相交、垂直和平行)比较明确,条件充分,并且采用了集中标注的方法,满足了设计基准、工艺基准与编程原点的统一。
因此该图的尺寸标注符合了数控加工的特点。
2、零件材料分析
由题目提供,材料为45钢。
3、精度分析
该零件最高精度等级为IT8级,所以表面粗糙度均为Ra3.2um。
加工时不宜产生震荡。
如果定位不好可能会导致表面粗糙度,加工精度难以达到要求。
4、结构分析
从图1上可以看出,带型腔的凸轮零件主要由圆弧和直线组成,该零件的加工内容主要有平面、轮廓、凸台、型腔、铰孔。
需要粗精铣上下表面外轮廓内轮廓凸台内腔及铰孔等加工工序。
二、选择设备
由该零件外形和材料等条件,选用XK713A数控铣床。
三、确定零件的定位基准和装夹方式
由零件图可得,以零件的下端面为定位基准,加工上表面。
把零件竖放加工外轮廓。
零件的装夹方式采用机用台虎钳。
四、确定加工顺序及进给路线
1、确定加工顺序
加工顺序的拟定按照基面先行,先粗后精的原则确定,因此先加工零件的外轮廓表面,加工上下表面,接着粗铣型腔,再加工孔,按照顺序再精铣一遍即可。
加工圆弧时,应沿圆弧切向切入。
2、进给路线
五、选择刀具
1、加工上下表面是采用Φ125mm的面铣刀,齿数为8。
2、粗加工外轮廓时采用Φ16mm的键槽铣刀。
3、粗加工内轮廓及孔时,选用Φ16mm的键槽铣刀以减少换刀次数。
4、精加工内外轮廓及孔,选取Φ16mm高速钢立铣刀。
5、Φ3mm的中心钻。
表1 数控加工刀具卡片
六、切削用量选择
1、背吃刀量
查《切削用量简明手册》,粗铣时决定铣削深度ap,由于加工余量不大,故可在一次走刀内切完,则ap=h=1.8mm。
精铣时铣削深度a p为a p=0.2mm。
2、主轴转速的选择
查《切削用量简明手册》,因为工件材料为45钢,刀具材料为高速钢,粗铣端面时主轴转速n(r/min)为221.54,考虑到车床及刀具等实际因素,取250r/min。
精铣端面时主轴转速n(r/min)为254.65,考虑到车床及刀具等实际因素,取300r/min。
由公式n=1000Vc/πd可以算出,粗铣型腔、孔和凸台时主轴转速n (r/min)为397.89,根据实际情况选取500;精铣型腔、孔和凸台时主轴转速n (r/min)为696.30,根据实际情况选取700。
钻中心孔时的主轴转速n(r/min)为1273.88根据实际情况选取1250。
3、进给速度的选择
因XK713A铣床功率为4KW,查《切削用量简明手册》,由表3-5粗铣时进给量f=0.5mm,由表3-4精铣时进给量f=0.05mm,φ16mm键槽铣刀粗铣时的进给速度V f(mm/min)为250,φ16mm高速钢立铣刀精铣时的进给速度V f(mm/min)为35;粗铣端面时V f(mm/min)为180,精铣端面时V f(mm/min)为30;φ3mm钻头进给速度V f(mm/min)为112.5。
七、填写数控加工工艺文件。