中北大学2006_2007学年第一学期末数值分析考试试题B参考答案
- 格式:doc
- 大小:154.45 KB
- 文档页数:3
数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211N dx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---()12x L x -=-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
题型一:有效数字1,确定113的首位数字x 1,要使113的近似值x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,要使112的相对误差不超过0.5×10-4,至少要保留几位有效数字?(2009-2010) 3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B)5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010) 4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)x i -1 0 2 3 f(x i )-7-1177,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008) 8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007) 9,已知f(x)的如下函数值表x i 0.1 0.2 0.3 0.4 f(x i )1.122.652.811.68选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表x i 1.0 1.5 2.0 sinx i0.84150.99750.9093用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x); (2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x); (3),当(3)(4)1|()|2|()|4,[0,3]fx fx x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:x -2 -1 0 1 2 y121用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i i x x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x=+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:x i 0 1 2 3 y i13610请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---====(1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x)(2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i i g f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x=+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:u i 0 1 9 16 v i11/21/31/4请用最小二乘法求形如011v c c u=+的经验公式,并求平方误差.(2006-2007)011:c c u v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hhhf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010) 3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)231212113112211224112211335112211212000010001,23025031,53()1(,)0,()(,)x A A x dx A x A x x dx A x A x x dx A x A x x dx x A A g x xg g g x x xg g ααα----+==+==+==+===-=-======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x 得解上述方程组得:x 法二:构造二次正交多项式11110110022110021211222112111221121(,)(,)30,(,)(,)53()()()()53()0,511,33133()[()()]355xg g g g g g g g g x x g x g x x g x x x x x x A x dx A x dx x x x x x f x dx f f βαβρ---=====--=-==-=---=⋅==⋅=--≈-+⎰⎰⎰令得高斯点: x 故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:3250()()(),(g x x ax b b x g x dx b a x xg x dx a g x x A A A x A x A x A x A x A x x x x x x x c x c x ϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x ,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5x A x A x A x c x c A x c x c A x A x c A x A x c A A c c A x x A x x A x A x c A x A x c A x A x c c x x ϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hhf x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式1211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006)7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hhf x dx A f h A f A f h --≈-++⎰.(2004-2005)8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分32x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点2,设定积分13x edx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分2cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分14x edx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005) 8,对于定积分1()If x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫ ⎪ ⎪ ⎪-⎝⎭的Doolittle 分解.(2010-2011) 212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫ ⎪- ⎪ ⎪⎝⎭的Doolittle 分解.(2009-2010) 3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)1234123410001013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解;(2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)432110205102051020*******101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x 7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求cond ∞(A).(2009-2010) 3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)222max max max 111-122-12max max max 1222||||()()()3||||(())()=()=1()|||||||| 3.T T A A A A A A A A A A cond A A A λλλλλλ----========解答:()则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪ ⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005) 6,设1231032475A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006)5332ρ+解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()002110211||0,=0=-=-12J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛;(2),取(0)(0,0,0)T x =,用雅可比迭代法进行求解,要求(1)()5||||10k k xx +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x(3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k kx x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 4134tan 5k k k k k k k Ak k k kkk⎛⎫- ⎪+ ⎪ ⎪= ⎪+ ⎪ ⎪+ ⎪⎝⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答:12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005)()01lim 10K k A→∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求125的值.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求6170的近似值的迭代公式,并确定初值的取值范围.(2010-2011)6661556'5"4"*600066601050517017001701170[5]66()170,()60,()300170()()0,.1170170170(5)17061170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><-=+-=+-解答:转化为方程的正根.由牛顿迭代法得迭代公式:当时,故此时收敛到当0<时,设66'6666611*60170,(0,170)1850()(5)0,(0,170),()(170)0,6:1700,170,(0,170),.0.x g x x g x g xx x x x x ∈=-<∈>=->>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求5140近似值的迭代公式,并给出初值的取值范围.(2009-2010)解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于5;又c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<1110,=50;51.25k k cx x c ϕϕϕϕϕ+-=-<<-<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又,则当(x )=0,即c=-时,收敛最快5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x x k ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,123c =-计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)3,()(3)()|133|12|1,11,3,-0,,0.333(2),()0+0,636(3),k k k x x x x c x x x x c x x cx cx x c or c x x ϕϕϕϕ++==+-=±=+-<+<-<<=±<<<<==±±解答:(1),令x 收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx 得c=故c=时,迭代收敛最快.迭代公式为:2012346*431(3)2321.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k k x x x x x x x x x x -=--=====-<=又因为|故6,方程x 3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)3'3223132(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]11()|||0.33,(13) 5.5xx x x x x ϕϕϕϕϕ+===∈∈=≤<+解答:(x)=取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x =-+=有一个两重根02x =,请以初值x 0=1.5,用m 重根的牛顿迭代法计算其近似值,要求51||10k k x x -+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xex +-=在0.6附近有一根x ,迭代法214,0,1,2kx k x ek +=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求120的近似值的迭代公式,并给出初值的取值范围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式xk+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230x xe -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因); (2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e+-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020x e x +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由;(2),取x 0=0.09,用局部收敛的迭代法计算x 5; (3),用牛顿法求3234的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由. 3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1)21x x +-,x 很大;(2)311x +-,|x|很小.(2010-2011)223331(1):1111=.1+1x x x x x x x +-=+++-+解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:;2,为了提高计算精度,当正数x 很大时,计算1x x +-时应转化成什么形式.(2005-2006)3,给出计算积分1,(0,1,2,10)10nnx I dx n x ==+⎰的递推稳定算法和初值.(2010-2011) 1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求1x n nI e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:g(n)(n+1)22n+3 2 g(n+1) (n+2)2 2n+5 2 g(n+2) (n+3)2 2n+7 g(n+3) (n+4)2 g(n+4)函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nbi ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n n n n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2bab af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, ,,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<; 10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=,011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=.3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。
n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。
( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。
( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。
5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。
2006/2007学年第一学期末考试试题参考答案(B 卷)
数值分析
使用班级: 06研
一、填空题(每空4分,共40分)
1. 由求解数学模型所采用的数值近似计算所产生的误差称为 截断 误差;
2. 设0.001369x =有4
位有效数字,则u =
的的计算结果中有 3位有效数字;
解:0.037000u =
=
,6541
()100.675100.5102
u ε---=
⨯=⨯<⨯,所以,u 有三位有效数字。
3. 设(0)1,(1)1,(2)5,f f f ==-=则[0,1]f = -2 ;[0,1,2]f = 4 ;()f x 的二次Newton
插值多项式为2
124(1) 461x x x x x -+--+或 ;又若(1)1f '=,则()f x 的三次Hermite
插值多项式为2
32123(1)(1)
41x x x x x x x x -+-+-+-+或
;
4. 已知方程ln 2x x -=在区间[2,4]中的有一个根,写出求解这一根的Newton 法迭代
公式10ln 21ln 11,0,1,1[2,4]
k k k k k k k k
x x x x x x x k x x +--+⎧
=-=⎪⎪-=-
⎨⎪∈⎪⎩ ,这一根大约为 3.1461932 ; 5. 求解初值问题00()(,),()y t f t y y t y '==的线性k 步法的一般形式为
0,0,1,,k
k
j
n j j n j j j y h f n M k
α
β++====-∑∑ ,又若局部截断误差
n k R +=
()10
(),()()k
k
p j
n j j n j n j j j y t h f t y t O h α
β++++==-=∑∑,则称此线性k 步法是p 阶的。
二、解答下列各题(每小题12分,共36分)
12分
1. 给定数据表
求形如y a bx
=
+的拟合函数。
解:令1
u a bx y
=+=得
………………………………….5分
对应的正规方程组T
T
X X X u =为 ()()()
5 2.
6 6.073252.6 1.72 3.82034
a b = ............................................................ 10分 解之得 ()()
0.278871.79958a b = .................................................................................. 11分
即
1
0.27887 1.79958y x
=
+ ................................................................... 12分
3 用Romberg 公式求定积分120
sin d x x ⎰
,要求计算出第一个Romberg 值(3)0T 。
解: k=0
F=[f(0) f(1)]=[0.00000000000 0.84147098481];
T=0.42073549240 .................................................................................................................. 3分 k=1
F=[f(1/2)]=[0.24740395925],
T=0.33406972583 0.30518113697 ................................................................................. 6分 k=2
F=[f(1/4),f(3/4)]=[ 0.06245931784 0.53330267354 ]
T=0.31597536076 0.30994390574 0.31026142365 .................................................... 9分 k=3 F=[f(1/8),f(3/8),f(5/8),f(7/8)]
=[0.01562436422 0.14016197235 0.38076640899 0.69298772725]
T=0.31168023948 0.31024853239 0.31026884083 0.31026895856 ............. 12分
k=0 T=0.42073549240
k=1 T=0.33406972583 0.30518113697
k=2 T=0.31597536076 0.30994390574 0.31026142365
k=3 T=0.31168023948 0.31024853239 0.31026884083 0.31026895856
k=4 T=0.31062036681 0.31026707592 0.31026831215 0.31026830376 2.110e-006 k=5 T=0.31035626065 0.31026822527 0.31026830189 0.31026830173 6.551e-009 k=6 T=0.31029028787 0.31026829695 0.31026830173 0.31026830172 2.150e-011 四、(本题6分) 设A=2112-⎛⎫
⎪
-⎝⎭
,用幂法求A 的按模最大的特征值及对应的一个特征向量。
取初始特征向量为
10.9x ⎛⎫
= ⎪-⎝⎭开始迭代。
误差要求:1210k k k
λλελ---=≤,其中k λ为第k 次迭代得到的特征值。
解:
0.719401*********.69459451369957x ⎛⎫
≈ ⎪-⎝⎭
注:以上计算过程是利用算法3.3的计算结果(使用2-范数);若利用算法3.2并使用1-范数,则计算结果为
1.000000000000000.99610894941634x ⎛⎫
≈ ⎪-⎝⎭
本题给分标准:公式 ...................................................................................................................... 3分 计算结果 ......................................................................................................................................... 6分。