2015_2016学年第一学期末数值分析考试试题A
- 格式:doc
- 大小:269.00 KB
- 文档页数:9
中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统内。
(2)试题类别指A卷或B卷。
2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u= 作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩ 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。
5. 取权函数()x ρ=[-1,1]上计算函数()1f x =与()221g x x =-的内积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+= ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。
中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。
(2)试题类别指A卷或B卷。
(3)试题印制手续命题教师到院教务科办理。
2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。
5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。
数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。
答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。
答案:二3. 梯形法则的误差与被积函数的______阶导数有关。
答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。
答案:一5. 幂迭代法是求解______特征值问题的数值方法。
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
期末考试试卷(A 卷)2007学年第二学期考试科目: 数值分析考试时间:120分钟学号 姓名 年级专业、判断题(每小题 分,共分)100011.用计算机求z —100■时,应按照n 从小到大的顺序相加。
n 3n3 .用数值微分公式中求导数值时,步长越小计算就越精确。
()4 .采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
()5 .用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
()二、填空题(每空 2分,共36分)1 .已知数a 的有效数为0.01 ,则它的绝对误差限为 ,相对误差限为 .10 -11 一0]2 .设 A= 0-2 1 ,x= -5,则| A 1 =, ||^|2 =Ax L =.-1 3 0J3 .已知 f (x) =2x 5 +4x 3—5x,则 f[—1,1,0] =, f[-3,-2,-1,1,2,3] =.13 34 .为使求积公式 f f (x)dx 定A f (———)+ A 2 f (0) + A 3 f (」一)的代数精度尽量局,应使t 3 3A =, A =, A =,此时公式具有 次的代数精度。
5 . n 阶方阵A 的谱半径P (A)与它的任意一种范数| A 的关系是.6 .用迭代法解线性方程组以=8时,使迭代公式 X(k41)=MX (k) + N (k=0,1,2,|||)产生的向量序列{X(k)}收敛的充分必要条件是 .7 .使用消元法解线性方程组 AX =8时,系数矩阵A 可以分解为下三角矩阵 L 和上三角矩2. 为了减少误差 ,应将表达式 J2001 - J1999改写为22001 ,1999进行计算。
4 -2阵U的乘积,即A = LU .若米用图斯消兀法解AX = B,其中A= 1 ,则一1 2 3 4 1 L = , U = ;若使用克劳特消元法解AX = B ,则u11 =;若使用平方根方法解AX = B,则111与u11的大小关系为 (选填:>, <,=,不一'定)。
2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。
一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。
若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。
若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。
若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。
3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。
题 号 一 二 三
总分
1 2 3 4
得 分 评卷人 技术是指 ,包括包括 、
和 。
其中。
其中
要给定其 和 两个关键力学参数。
两个关键力学参数。
分析理论常用的三种方法是 、 和 。
单元和单元和 单元,而网格类型则是 单元和 单元。
单元。
料设置为 材料。
材料。
2. 请简要论述数值分析中的边界条件的概念。
3. 利用Hypermesh 前处理平台划分六面体网格时,需要对几何模型进行分解成简单的几何体再进行网格划分。
单的几何体再进行网格划分。
请你对下图几何模型进行分解,请你对下图几何模型进行分解,请你对下图几何模型进行分解,并简要说明网格划分并简要说明网格划分的步骤。
的步骤。
4. 经过本课程的学习,请你简单描述你对HyperWorks 平台的了解和认识,以及你对CAE 技术未来发展的看法。
技术未来发展的看法。
结果(单位)结果(单位)
模具应力最大值模具应力最大值 产品挤出的最大速度产品挤出的最大速度
模具z 方向的最大变形量方向的最大变形量
密度密度 弹性模量弹性模量 泊松比泊松比 7.8g/cm 3
210GPa
0.3 。
中北大学
数值分析课程考试试题
(课程名称须与教学任务书相同)
2015/2016 学年第1 学期
试题类别 A 命题期望值70
拟题日期2015.12.12 拟题教师
课程编号教师编号1120048
基层教学组织负责人
课程结束时间2015.12.4 印刷份数
使用班级2015级研究生
备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统内。
(2)试题类别指A卷或B卷。
2015/2016 学年 第 1 学期末考试试题(A 卷)
课程名称 数值分析1
使用班级: 2015级研究生
一、填空题(每空2分,共30分)
1. 设()e ln x
f x y =, 2.310.005, 1.930.005x y =±=±,则用()2.31,1.93u f = 作为
(),f x y 的近似值具有 位有效数字。
2. 用列主元消去法解方程组123123123341
290431
x x x x x x x x x -+=⎧⎪-+-=⎨⎪--+=-⎩
,选取的第一个主元素1(1)
,1i a = ;
3. 已知求解某线性方程组的一个迭代公式为(1)()()
123(1)()()
2
23(1)()()3
230.10.210.20.11,1,2,0.20.32
k k k k k k k k k x x x x x x k x x x +++⎧=+-⎪=-++=⎨⎪=--⎩ ,记其迭代矩阵为J G ,则J ∞
=G ,又设该线性方程组的解为*x ,取初始解向量
为()T
(0)
0,0,0=x
,则(1)=x ,(20)*
∞
-≤x x ;
4. 方程e x
x -=的根*
x ≈ (要求至少具有7位有效数字);
5. 取权函数()2
e x
x ρ-=,在区间(),-∞+∞内,计算
()2f x x =与()f x 的内积
(),f f = ;
(已知:2
e d x
x +∞
--∞
=⎰ 6. 设()()110,014,(1)16f f f -===则[1,0]f -= ,[1,0,1]f -= ;()
f x 的二次Newton 插值多项式为 ;又若(0)3f '=,则()f x 的三次Hermite 插值多项式为 ;
7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+= ,
b a
h n
-=
,则近似计算积分()d b a I f x x =⎰的复化Simpson 公式的截断误差
S R = ;该公式具有 次代数精度;
8. 已知求解常微分方程初值问题()()000
,,y f t y t t T
y t y '=≤≤⎧⎪⎨=⎪⎩的一个二步方法的计算公式为
212412
333
n n n n y y y hf +++=
-+ 则它的局部截断误差2n R += ;它是一个 阶方法。
二、(每小题10分,共20分)
1. 用LU 分解法求解线性方程组1234
1234
12341234
243475173249237821
x x x x x x x x x x x x x x x x --++=⎧⎪--++=⎪⎨
+--=-⎪⎪--++=⎩;
2. 用Romberg 方法计算积分2
1
e d x I x -=
⎰
的近似值,要求计算到第一个Romberg 值(3)0T ,并
与准确值0.7468241328124270...进行比较,说明计算的精度。
三、(每小题10分,共40分)
1. 取松弛因子 1.25ω=,写出求解线性方程组12
1232332124553x x x x x x x -=⎧⎪
-++=⎨⎪+=-⎩
的SOR 方法的迭代公
式,并说明其收敛性(不要求进行迭代计算)。
2. 利用函数e x y c =拟合下表所列数据(),i i x y
3. 写出用Newton 迭代法求解非线性方程组222
20.5
44y x x x y ⎧=-+⎨+=⎩
的步骤,并取初值00(,)(1.9,0.3)x y =计算近似解11(,)x y (只进行一次迭代)。
4. 设10⎛⎫
=
⎪⎝⎭
A ,写出用反幂法求A 接近于3.5的特征值及相应的一个特征向量的计算过
程。
并取初始特征向量为(0)
0.950.25⎛⎫= ⎪⎝⎭
u
进行2次行比较,说明计算的精度。
四、(本题10分) 写出用标准4级4阶RK 方法求解以下常微分方程初值问题的计算公式,
2
21,021(0)0
xy y x x y ⎧'
=-≤≤⎪+⎨
⎪=⎩ 并取0.2h =计算(0.2)y 的近似值。