数值分析实验报告中北大学
- 格式:doc
- 大小:235.50 KB
- 文档页数:29
数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。
在实际应用中,数值分析广泛应用于工程、物理、金融等领域。
本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。
二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。
具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。
三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。
在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。
2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。
我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。
具体的计算步骤可以参考数值分析教材。
3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。
它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。
具体的计算步骤也可以参考数值分析教材。
4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。
主要考虑的因素包括插值误差、计算效率等。
四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。
经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。
在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。
2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。
在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。
五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。
数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。
在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。
数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。
二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。
(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。
(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。
(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。
三、实验步骤
1.首先启动MATLAB软件。
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
《数值分析》实验报告2019年5月一、问题的提出由于计算机的实质计算是在一个有限的浮点数集合上进行的,在大量运算中的误差积累会使得计算过程出现不稳定,通过实验深入了解高斯消元法从理论算法到数值算法,能稳定的关键是选主元。
二、实验名称运用MATLAB编程实现高斯消去法和高斯列主元消去法。
三、实验目的1、熟悉了解高斯消去法和高斯列主元消去法的算法。
2、学习MATLAB软件的功能。
四、基本原理五、实验环境操作环境:Windows实验平台:Matlab软件六、实验设计1 高斯顺序消去法(1)算例:课本p10例1(2)程序清单高斯消去法的MATLAB函数文件gauss.m如下:clcclear allA=[1,1,1;0,4,-1;2,-2,1];r=[6;5;1];[row,col]=size(A);n=row;%-------------------------------------------------------------------B=A;b=r;C=B;c=b;for i=1:n[maxi,row]=max(abs(C(:,i)));if C(row,i)<0maxi=-maxi;endB(i,:)=C(row,:);B(row,:)=C(i,:);b(i)=c(row);b(row)=c(i);B(i,:)=B(i,:)/maxi;b(i)=b(i)/maxi;C=B;for j=i+1:nB(j,:)=B(j,:)-C(j,i)*B(i,:);b(j)=b(j)-C(j,i)*b(i);endC=B;C(i,:)=0;C(:,i)=0;c=b;end%-------------------------------------------------------------------x(n)=b(n);for i=n-1:-1:1sum=0;for j=i+1:nsum=sum+B(i,j)*x(j);endx(i)=(1/B(i,i))*(b(i)-sum);end%-------------------------------------------------------------------% Input% Ax=rdisp(' 输入 Ax=r') disp('输入矩阵 A =')disp(A)disp(' r =')disp(r)% Output% Bx=bdisp(' 输出 Bx=b')disp(' 上三角矩阵 B =') disp(B)disp(' b=')disp(b)disp(' 求得方程组的解 :') x=x'(3)实验结果及分析:Ax=r输入矩阵 A =1 1 10 4 -12 -2 1r =651输出 Bx=b上三角矩阵 B =1.0000 -1.0000 0.5000 0 1.0000 -0.2500 0 0 1.0000b=0.50001.25003.0000求得方程组的解 :x =232 列主元消去法(1)算例:课本p10页例1(2)程序清单高斯列主元消去法的MATLAB函数文件gauss_lie.m如下:function x=gauss_lie(A,b)%采用高斯列主元法求解方程组Ax=bn=length(b);p=1:n;lu=A;y=[];for k=1:n[c,i]=max(abs(lu(k:n,k)));ik=i+k-1;if ik~=km=p(k);p(k)=p(ik);p(ik)=m;ck=lu(k,:);lu(k,:)=lu(ik,:);lu(ik,:)=ck;endif k==nbreak;lu(k+1:n,k)=lu(k+1:n,k)/lu(k,k);lu(k+1:n,k+1:n)=lu(k+1:n,k+1:n)-lu(k+1:n,k)*lu(k,k+1:n);endl=diag(ones(n,1))+tril(lu,-1);u=triu(lu);y(1)=b(p(1));for i=2:ny(i)=b(p(i))-l(i,1:i-1)*y(1:i-1)';endx(n)=y(n)/u(n,n);for i=n-1:-1:1x(i)=(y(i)-u(i,i+1:n)*x(i+1:n)')/u(i,i);endx=x';(3)实验结果及分析:>> A=[1,1,1;0,4,-1;2,-2,1];>> b=[6;5;1];>> gauss_lie (A,b);ans =13七、结果说明用消去法解方程组的基本思想都是设法消去方程组的系数矩阵A的主对角线下的元素,将AX=b化为等价的上三角形方程组,然后再通过回代过程获得方程组的解。
数值分析实验报告实验目的:通过对数值分析实验的进行,掌握牛顿法解方程的根的求解过程和方法,通过编程实现牛顿法。
实验原理:牛顿法是一种迭代法,通过不断迭代逼近根的过程来求解方程的根。
假设f(x)在[x_0,x]中连续且有一阶连续导数,则根据泰勒展开公式,有下面的公式成立:f(x)=f(x_0)+f'(x_0)(x-x_0)+R(x)其中f(x)是方程的函数,f'(x_0)是f(x)在x_0处的导数,R(x)是无穷小量。
当x接近于x_0时,可以忽略R(x)的影响,即认为R(x)足够小可以忽略。
假设x_0是方程的一个近似根,可以得到如下的迭代公式:x_1=x_0-f(x_0)/f'(x_0)x_2=x_1-f(x_1)/f'(x_1)...在迭代的过程中,如果迭代的结果与上一次迭代的结果的误差小于设定的阈值,则可以认为找到了方程的根。
实验步骤:1.确定方程和初始近似根x_0。
2.计算f(x_0)和f'(x_0)。
3.使用迭代公式计算x的近似值x_i,直到满足终止条件(比如误差小于设定的阈值)。
4.输出计算得到的方程的根。
实验结果和分析:在实验中,我们选择了方程f(x)=x^2-2作为实验对象,初始近似根选择为x_0=1根据上述的迭代公式,可以依次计算得到x_1=1.5,x_2=1.4167,x_3=1.4142,直到满足终止条件。
通过实验计算,可以得到方程f(x)=x^2-2的两个根为x=-1.4142和x=1.4142,与理论解x=±√2比较接近,说明牛顿法可以有效地求解方程的根。
总结:通过本次实验,掌握了牛顿法解方程根的原理和实现方法,实验结果与理论解相近,验证了牛顿法的有效性。
在实际应用中,牛顿法常用于求解非线性方程和优化问题,具有较高的精度和收敛速度,但在选择初始近似根时需要谨慎,否则可能会导致迭代结果发散。
《数值分析》课程实验报告数值分析实验报告《数值分析》课程实验报告姓名:学号:学院:机电学院日期:20__ 年 _ 月_ 日目录实验一函数插值方法 1 实验二函数逼近与曲线拟合 5 实验三数值积分与数值微分 7 实验四线方程组的直接解法 9 实验五解线性方程组的迭代法 15 实验六非线性方程求根 19 实验七矩阵特征值问题计算 21 实验八常微分方程初值问题数值解法 24 实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
数据如下:(1) 0.4 0.55 0.65 0.80 0.95 1.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
(提示:结果为, )(2) 1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange多项式,计算的,值。
(提示:结果为, )二、要求 1、利用Lagrange插值公式编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、对此插值问题用Newton插值多项式其结果如何。
Newton 插值多项式如下:其中:三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
四、实验步骤(1) 0.4 0.55 0.65 0.80 0.951.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
实验类别:数值分析专业:信息与计算科学班级:学号:姓名:中北大学理学院实验二 函数逼近与曲线拟合【实验内容】从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。
【实验方法或步骤】1、用最小二乘法进行曲线拟合;2、近似解析表达式为;33221)(t a t a t a t ++=ϕ3、打印出拟合函数)(t ϕ,并打印出)(j t ϕ与)(j t y 的误差,12,,2,1 =j ;4、另外选取一个近似表达式,尝试拟合效果的比较;5、* 绘制出曲线拟合图。
#include "stdio.h" #include "conio.h" #include "stdlib.h" #include "math.h"#define N 12//N 个节点 #define M 2//M 次拟合 #define K 2*Mvoid zhuyuan (int k,int n,float a[M+1][M+2]) {int t,i,j;float x,y;x=fabs(a[k][k]);t=k;for (i=k+1;i<=n;i++)if (fabs(a[i][k])>x){x=fabs(a[i][k]);t=i;}for (j=k;j<=n+1;j++){y=a[k][j];a[k][j]=a[t][j];a[t][j]=y;}}void xiaoyuan(int n,float a[M+1][M+2]){int k,i,j;for(i=0;i<n;i++){zhuyuan(i,n,a);for (j=i+1;j<=n;j++)for (k=i+1;k<=n+1;k++)a[j][k]=a[j][k]-a[j][i]*a[i][k]/a[i][i];}}void huidai(int n,float a[M+1][M+2],float x[M+1]){int i,j;x[n]=a[n][n+1]/a[n][n];for (i=n-1;i>=0;i--){ x[i]=a[i][n+1];for (j=i+1;j<=n;j++)x[i]=x[i]-a[i][j]*x[j];x[i]=x[i]/a[i][i];}}void main(){float x_y[N][2],A[N][K+1],B[N][M+1],AA[K+1],BB[M+1],a[M+1][M+2],m[M+1]; int i,j,n;printf("请输入%d个已知点:\n",N);for(i=0;i<N;i++){printf("(x%d y%d):",i,i);scanf("%f %f",&x_y[i][0],&x_y[i][1]);}for(i=0;i<N;i++){A[i][0]=1;for(j=1;j<=K;j++)A[i][j]=A[i][j-1]*x_y[i][0];for(j=0;j<=M;j++)B[i][j]=A[i][j]*x_y[i][1];}for(j=0;j<=K;j++)for(AA[j]=0,i=0;i<N;i++)AA[j]+=A[i][j];for(j=0;j<=M;j++)for(BB[j]=0,i=0;i<N;i++)BB[j]+=B[i][j];for(i=0;i<M+1;i++){a[i][M+1]=BB[i];for(j=0;j<=M;j++)a[i][j]=AA[i+j];}n=M;printf("正规系数矩阵为:\n");for(i=0;i<=n;i++){for(j=0;j<=n+1;j++)printf("%f ",a[i][j]);printf("\n");}xiaoyuan(n,a);huidai(n,a,m);printf("拟合曲线方程为:\ny(x)=%g",m[0]); for(i=1;i<=n;i++){printf(" + %g",m[i]);for(j=0;j<i;j++){printf("*X");}}}p3=polyfit(x,y,3);y3=polyval(p3,x);e3=norm(y-y3);t=0:5:60;pt3=polyval(p3,t);plot(t,pt3);plot(t,pt3);title('3次拟合函数')>>3次拟合函数实验三 数值积分与数值微分【实验内容】选用复合梯形公式,复合Simpson 公式,Romberg 算法高斯算法计算(1) )5343916.1(sin 44102≈-=⎰I dx x I(2) )9460831.0,1)0((sin 10≈==⎰I f dx xxI (3) dx x e I x⎰+=1024 ;(4) dx x x I ⎰++=1021)1ln( 【实验前的预备知识】1、 深刻认识数值积分法的意义;2、 明确数值积分精度与步长的关系;3、 根据定积分的计算方法,可以考虑二重积分的计算问题。
实验类别:数值分析专业:信息与计算科学班级:学号:姓名:中北大学理学院实验二 函数逼近与曲线拟合【实验内容】从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。
【实验方法或步骤】1、用最小二乘法进行曲线拟合;2、近似解析表达式为;33221)(t a t a t a t ++=ϕ3、打印出拟合函数)(t ϕ,并打印出)(j t ϕ与)(j t y 的误差,12,,2,1 =j ;4、另外选取一个近似表达式,尝试拟合效果的比较;5、* 绘制出曲线拟合图。
#include "stdio.h" #include "conio.h" #include "stdlib.h" #include "math.h"#define N 12//N 个节点 #define M 2//M 次拟合 #define K 2*Mvoid zhuyuan (int k,int n,float a[M+1][M+2]) {int t,i,j;float x,y;x=fabs(a[k][k]);t=k;for (i=k+1;i<=n;i++)if (fabs(a[i][k])>x){x=fabs(a[i][k]);t=i;}for (j=k;j<=n+1;j++){y=a[k][j];a[k][j]=a[t][j];a[t][j]=y;}}void xiaoyuan(int n,float a[M+1][M+2]){int k,i,j;for(i=0;i<n;i++){zhuyuan(i,n,a);for (j=i+1;j<=n;j++)for (k=i+1;k<=n+1;k++)a[j][k]=a[j][k]-a[j][i]*a[i][k]/a[i][i];}}void huidai(int n,float a[M+1][M+2],float x[M+1]){int i,j;x[n]=a[n][n+1]/a[n][n];for (i=n-1;i>=0;i--){ x[i]=a[i][n+1];for (j=i+1;j<=n;j++)x[i]=x[i]-a[i][j]*x[j];x[i]=x[i]/a[i][i];}}void main(){float x_y[N][2],A[N][K+1],B[N][M+1],AA[K+1],BB[M+1],a[M+1][M+2],m[M+1]; int i,j,n;printf("请输入%d个已知点:\n",N);for(i=0;i<N;i++){printf("(x%d y%d):",i,i);scanf("%f %f",&x_y[i][0],&x_y[i][1]);}for(i=0;i<N;i++){A[i][0]=1;for(j=1;j<=K;j++)A[i][j]=A[i][j-1]*x_y[i][0];for(j=0;j<=M;j++)B[i][j]=A[i][j]*x_y[i][1];}for(j=0;j<=K;j++)for(AA[j]=0,i=0;i<N;i++)AA[j]+=A[i][j];for(j=0;j<=M;j++)for(BB[j]=0,i=0;i<N;i++)BB[j]+=B[i][j];for(i=0;i<M+1;i++){a[i][M+1]=BB[i];for(j=0;j<=M;j++)a[i][j]=AA[i+j];}n=M;printf("正规系数矩阵为:\n");for(i=0;i<=n;i++){for(j=0;j<=n+1;j++)printf("%f ",a[i][j]);printf("\n");}xiaoyuan(n,a);huidai(n,a,m);printf("拟合曲线方程为:\ny(x)=%g",m[0]); for(i=1;i<=n;i++){printf(" + %g",m[i]);for(j=0;j<i;j++){printf("*X");}}}p3=polyfit(x,y,3);y3=polyval(p3,x);e3=norm(y-y3);t=0:5:60;pt3=polyval(p3,t);plot(t,pt3);plot(t,pt3);title('3次拟合函数')>>3次拟合函数实验三 数值积分与数值微分【实验内容】选用复合梯形公式,复合Simpson 公式,Romberg 算法高斯算法计算(1) )5343916.1(sin 44102≈-=⎰I dx x I(2) )9460831.0,1)0((sin 10≈==⎰I f dx xxI (3) dx x e I x⎰+=1024 ;(4) dx x x I ⎰++=1021)1ln( 【实验前的预备知识】1、 深刻认识数值积分法的意义;2、 明确数值积分精度与步长的关系;3、 根据定积分的计算方法,可以考虑二重积分的计算问题。
4、 比较各种积分方法复杂度及收敛速度。
【实验方法或步骤】 1、 编制数值积分算法的程序;2、 分别用两种算法计算同一个积分,并比较其结果;3、 分别取不同步长n a b h /)(-=,试比较计算结果(如20,10=n 等);4、 给定精度要求ε,试用变步长算法,确定最佳步长。
程序:function [I,step]=CombineTraprl(f,a,b,eps) if(nargin==3) eps=1.0e-4; end n=1;h=(b-a)/2; I1=0;I2=(subs(sym(f),findsym(sym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1;h=(b-a)/n; I1=I2; I2=0;for i=0:n-1 x=a+h*i; x1=x+h;I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end endI=I2;step=n;用该方法计算)5343916.1(sin 4412≈-=⎰I dx x I 的程序为[q,s]=CombineTraprl('sqrt(4-(sinx)^2)',0,0.25,1.5343916) 得结果为q =0.4986 s =3即结果为0.4986积分区间为3个 辛普森公式求函数function [I,step]=Int Simpson(f,a,b,type,eps)%type 分别为1,2,3时分别为辛普森公式,3/8公式,复合辛普森 if(type==3&&nargin==4) eps=1.0e-4; end I=0;switch type case 1,I=((b-a)/6)*(subs(sym(f),findsym(sym(f)),a)+... 4*subs(sym(f),findsym(sym(f)),(a+b)/2)+... subs(sym(f),findsym(sym(f)),b)); step=1; case 2,I=((b-a)/8)*(subs(sym(f),findsym(sym(f)),a)+... 3*subs(sym(f),findsym(sym(f)),(2*a+b)/3)+...3*subs(sym(f),findsym(sym(f)),(a+2*b)/3)+subs(sym(f),findsym(sym(f)),b)); step=1; case 3, n=2;h=(b-a)/2; I1=0;I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1;h=(b-a)/n; I1=I2; I2=0;for i=0:n-1 x=a+h*i; x1=x+h;I2=I2+(h/6)*(subs(sym(f),findsym(sym(f)),x)+... 4*subs(sym(f),findsym(sym(f)),(x+x1)/2)+... subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; end用该方法计算)5343916.1(sin 4412≈-=⎰I dx x I的程序为[q,s]=IntSimpson('sqrt(4-(sinx)^2)',0,0.25,1) 得结果为q =0.4987 s =1即结果为0.4987实验五 解线性方程组的迭代法【实验内容】对1、设线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--------------------------2119381346323125136824381004120291372642212341791110161035243120536217758683233761624491131512013012312240010563568000012132410987654321x x x x x x x x x x()Tx 2,1,1,3,0,2,1,0,1,1*--=2、设对称正定系数阵线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------------------45152292320601924336002141103520411144334310422181233416120653811414023121220024042487654321x x x x x x x x ()Tx 2,0,1,1,2,0,1,1*--=3、三对角形线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410987654321x x x x x x x x x x ()Tx 1,1,0,3,2,1,0,3,1,2*---=试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。