分类讨论综合型问题
- 格式:doc
- 大小:196.50 KB
- 文档页数:3
初三数学专题复习:分类讨论问题【学习目标】1、学会运用数学的思维方式去观察、分析数学问题,体会分类讨论思想解决数学问题的方法.2、培养学生思维的逻辑性、探究性、以及归纳的条理性、完整性.【学习重点】用分类讨论思想观察、分析数学问题【学习难点】选择恰当的标准进行分类【学习过程】一、分类讨论概述:1、分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想.2、分类的要求:①分类的标准统一②分类要不重不漏.二、典型例题例1.已知直角三角形两边、的长满足,则第三边长为。
例2.⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD的距离是()A. 7㎝B. 8㎝C. 7㎝或1㎝D. 1㎝例3.如图,正方形ABCD的边长是2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动。
当DM=时,△ABE与以D、M、N为顶点的三角形相似。
例4.如图,在直角梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P 从D 出发,沿射线DA 的方向以每秒2个单位长度的速度运动,动点Q 从点C 出发,经线段CB 上以每秒1个单位长度的速度向点B 运动,点P 、Q 分别从D 、C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动时间为秒。
⑴设△BPQ 的面积为S ,求S 与之间的函数关系式。
⑵当为何值时,以B 、P 、Q 三点为顶点的三角形是等腰三角形?二、当堂达标1.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4,0)B .(1,0)C .(-2 2,0)D .(2,0)2.若函数y =⎩⎪⎨⎪⎧x 2+2(x ≤2),2x (x >2),则当函数值y =8时,自变量x 的值是( )A .± 6B .4C .±6或4D .4或- 63.如图,在平面直角坐标系xOy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4),连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形,那么所有满足条件的点P 的坐标是( )A .(8,4)B .(8,4)或(-3,4)C .(8,4)或(-3,4)或(-2,4)D .(8,4)或(-3,4)或(-2,4)或⎝⎛⎭⎫-76,44.矩形一个内角的平分线分矩形一边长为1 cm 和3 cm 两部分,则这个矩形的面积为多少cm 2?( )A .4B .12C .4或12D .6或85.若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m,1),则k 的值是( )A .-2或 2B .-22或22 C.22D. 26.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为______________. 7.如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有________个.8.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从B点出发,以每秒1 cm的速度沿B→A→C的方向运动,设运动的时间为t秒,过D、P两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t的值为________.9.已知正方形ABCD中,点E在边DC上,DE=2,EC=1,如图所示.把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_______.10.如图,点A、B在直线MN上,AB=11 cm,⊙A、⊙B的半径均为1 cm,⊙A以每秒2 cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A出发后________秒两圆相切.11.(2010·柳州)如图,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t值为多少时,△BEF是直角三角形.12.(2011·南通)已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a(x-1)2+k(a>0),经过其中三个点.(1)求证:C、E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上;(2)点A在抛物线y=a (x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.13、如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD 内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1)求过A、C两点直线的解析式;(2)当点N在半圆M内时,求a的取值范围;(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M 为顶点的三角形相似时,求点N的坐标.中考数学专题复习分类讨论问题参考答案一、例题参考答案【例题1】解:由已知易得⑴若是三角形两条直角边的长,则第三边长为。
怎样解决初中数学分类讨论问题在数学问题中,如果一个命题的题设或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类地加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论法。
需要利用这种方法解决的问题就是分类讨论问题。
分类讨论问题是近年来中考命题的热点内容之一,这一类数学问题,往往具有较强的逻辑性、综合性和探索性,既能全面考查同学们的数学知识又能考查同学们的思维能力。
通过加强数学分类讨论问题的求解训练,对提高同学们的综合学习能力会有很大帮助,同时有利于培养同学们严谨、求实的学习态度,培养同学们思维的条理性、缜密性、科学性,提高同学们对学习数学的兴趣,并且这种优良的思维品质对同学们以后的学习生活也会有深刻和久远的影响。
那么,怎样才能熟练解决初中数学分类讨论问题呢?一、解分类讨论题的方法及步骤解决分类讨论问题的一般方法及步骤是:(1)根据题设条件及设计的解题过程确定是否需要分类讨论,从而确定分类对象,然后确定分类标准。
(2)在确定讨论对象后,针对这些对象实施分类讨论,对比较复杂的问题,还要进行逐级分类。
(3)对讨论的结果进行归纳、合并,综合得出结论。
具体流程是:明确讨论的对象和动机→确定分类→逐类进行讨论→归纳综合结论→检验分类是否完备。
二、解决初中数学分类讨论问题应注意的问题首先要明确分类讨论的动因与讨论的方法,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由于数学概念、性质、定理、公式的限制条件引起的讨论,有些概念、性质、公式本身就是分类给出的,运用时应按规定分类,再按常规方法求解;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于问题中含有的参变量的不同取值会导致不同结果而需要对其进行分类讨论。
其次,分类时要条理分明,做到分类讨论既不重复也无遗漏。
这是解答初中数学分类讨论问题的基本原则。
也就是说在分类讨论中,要科学合理地分类,分类时须遵循三个原则,即同标准,无遗漏,不重复,就是必须按照同一个标准进行分类,切不可开始时按这个标准分类,后面就按另一个标准分类了,并且要做到分类时既不重复,也无遗漏,考虑到所有可能的情况。
第36讲 分类讨论型问题(建议该讲放第21讲后教学)类型一 由计算化简时,运用法则、定理和原理的限制引起的讨论例1(2016·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm2【解后感悟】解此题的关键是求出AB=AE,注意AE=1或3不确定,要进行分类讨论.1.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.【解后感悟】本题是房款=房屋单价×购房面积在实际生活中的运用,由于单价随人均面积而变化,所以用分段函数的解析式来描述.同时建立不等式组求解,解答本题时求出函数解析式是关键.2.(1)在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A .b>2B .-2<b<2C .b>2或b<-2D .b<-2 (2)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t(秒),下列能反映S 与t 之间函数关系的图象是( )3.已知抛物线y 1=ax 2+bx +c(a ≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.类型三 由三角形的形状、关系不确定性引起的讨论例3 (2017·湖州)如图,在平面直角坐标系xOy 中,已知直线y =kx(k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结AC.若△ABC 是等腰三角形,则k 的值是________.【解后感悟】解题的关键是用k 表示点A 、B 、C 的坐标,再进行分类讨论.4.(1)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A .4B .5C .6D .8(2) (2016·北流模拟)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =6,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .(3) (2016·临淄模拟)如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,且CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四由特殊四边形的形状不确定性引起的讨论例4(2017·鄂州模拟)如图1,在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C 同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形ABQP成为矩形?(2)当t为何值时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.【解后感悟】解本题的关键是用方程(组)的思想解决问题,涉及四边形的知识,同时也是存在性问题,解答时要注意分类讨论及数形结合.5.(1)(2016·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D,使这四个点构成平行四边形,则D点坐标为.(2)(2016·江阴模拟)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=s时,以A、C、E、F为顶点的四边形是平行四边形.(3) (2016·金华模拟)如图,B(6,4)在函数y =12x +1的图象上,A(5,2),点C 在x 轴上,点D 在函数y =12x +1上,以A 、B 、C 、D 四个点为顶点构成平行四边形,写出所有满足条件的D 点的坐标 .(4)(2016·萧山模拟)已知在平面直角坐标系中,点A 、B 、C 、D 的坐标依次为(-1,0),(m ,n),(-1,10),(-7,p),且p ≤n.若以A 、B 、C 、D 四个点为顶点的四边形是菱形,则n 的值是 .类型五 由直线与圆的位置关系不确定性引起的讨论例5 如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q.A 、B 两点同时从点P 出发,点A 以5cm /s 的速度沿射线PM 方向运动,点B 以4cm /s 的速度沿射线PN 方向运动.设运动时间为t(s ).(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【解后感悟】本题是直线与圆的位置关系应用,题目设置具有创新性.解决本题的关键是抓住直线与圆的两种情况位置关系,及其对应数量关系进行分析.6.(2016·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设▱PCOD的面积为S.①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.【方法与对策】本题是四边形的综合题,对于第(3)题解题的关键是正确分几种不同情况求解.①当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解;当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N 在CE 边上时,由△EFN ∽△EOC 求解;②当1≤t <94时和当92<t ≤5时,分别求出S 的取值范围.这种双动点型、分类讨论问题是中考命题常用的策略.【分类讨论应不重复、不遗漏】在△ABC 中,P 是AB 上的动点(P 异于A ,B),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有________条.参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD=QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或455.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,186.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE =32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MF CO =EF EO ,即26-2t =23+t,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连结PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB =72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB ∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.。
初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。
另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。
把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。
它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。
分类讨论思想方法也是一种重要的解题策略。
分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先可以求出B 点坐标()033,,A 点坐标(9,0)。
设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。
(不适合条件的解已舍去)点拨:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。
分类讨论解不等式后的“综上所述”问题分类讨论解不等式后的“综上所述”问题在解不等式时,有好多题是用分类讨论方法来解题,好多学生在分类讨论后不知道怎么写“综上所述”。
现总结如下:其中“a”代表参数,“x”代表自变量。
共有三句话:讨论参数a,求参数a的范围,综上所述要求分类讨论结果的并集。
讨论参数a,求自变量x的范围,综上所述时讨论几种情况就写几种情况。
讨论自变量x,求自变量x的范围,综上所述要求分类讨论结果的并集。
举例如下:讨论参数a,求参数a的范围,综上所述要求分类讨论结果的并集若cos2θ+2msinθ-2m-2<0对θ∈R恒成立,求实数m的取值范围.2解:将原不等式变为sinθ-2msinθ+2m+1>0即(sinθ-m)2-m2+2m+1>0恒成立,令sinθ=t,则 y=(t-m)2-m2+2m+1(|t|≤1)∴只需求y=(t-m)2-m2+2m+1的最小值大于0恒成立.①当m>1时,ymin=f(1)=2>0②当m<-1时,ymin=f(-1)=4m+2>0 m>- (舍) ③当-1≤m≤1时,ymin=f(m)=-m2+2m+1>0 ∴1-<m≤1综合①②③得 m>1-.讨论参数a,求自变量x的范围,综上所述时讨论几种情况就写几种情况解关于x 的不等式a(x?1)>1(a≠1)。
x?2解:原不等式可化为:(a?1)x?(2?a)>0,x?2①当a>1时,原不等式与(x-a?2)(x-2)>0同解。
a?1由于a?2?1?1?1?2,a?1a?1∴原不等式的解为(-∞,a?2)∪(2,+∞)。
a?1②当a<1时,原不等式与(x-a?2)(x-2)<0同解。
a?1由于a?2?1?1,a?1a?1若a<0,a?2?1?1?2,解集为(a?2,2);a?1a?1a?1若a=0时,a?2?1?1?2,解集为?;a?1a?1若0<a<1,a?2?1?1?2,解集为(2,a?2)。
a?1a?1a?1综上所述:当a>1时解集为(-∞,a?2)∪(2,+∞);a?1当0<a<1时,解集为(2,a?2);当a=0时,解集为?;a?1a?1当a<0时,解集为(a?2,2)。
第三讲分类讨论问题---分类讨论能力训练教学建议:小学数学的分类思想,就是把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把这几类的结论汇总,得出问题的答案,这种解决问题的思想方法就是分类讨论的思想方法.分类思想,贯穿于整个数学教学的内容中。
分类思想方法的渗透可以根据学生的年龄特征,以及学习的各阶段的认识水平和知识特点,循序渐进,反复训练,逐步上升,可以让学生在数学知识学习过程中,通过类比、观察、分析、综合、概括,形成对分类思想的主动应用每个学生在日常中都具有一定的分类知识,如人群的分类、书籍的分类等,我们利用学生的这一认识基础,把生活中的分类移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。
比如在五年级“方程的意义”教学中,学生对方程意义的理解就是通过式的二次分类建构对“相等关系”、“含有未知数”的理解,从而把握方程的特质的。
教学时首先出示各种各样的“式”,按照式子中有无等号可分为:有等号的式子和不含有等号的式子;按照式子中是否含有未知数又可分为:含有未知数和不含有未知数的等式。
进一步分别对每种情况中的第一类进行观察,将他们分类,该如何进行?将有等号的式子按照式子中是否含有未知数,分成两类:含有未知数的式子和不含有未知数的式子。
将含有未知数的式子按照式子中是否有等号,分成两类:有等号的式子和没有等号的式子。
此时,满足方程的二要素便很清楚了:含有未知数、等式。
再如,数的整除中对自然数的分类:按自然数能否被2整除可分为奇数和偶数;根据自然数的约数的个数又可分为质数、1和合数;而这正是本阶段需要学生掌握的重点之一。
通过分类,建构了知识网络,又突出了学习的重点。
初中数学从开始接触绝对值、相反数等概念后,分类讨论成为非常重要的数学思想与方法,许多初一新生在这个问题上形成很大知识缺陷,以至影响初中阶段的学习,因此,让小学毕业生尽早明确解题不仅要准备无误,而且还要完整无缺是至关重要的。
分类讨论型问题的解题策略数学思想和方法属于基础知识的范畴,分类讨论是中学数学中常用的一种数学思想方法。
近年各地中考试题都加强了数学思想方法的考查,其中分类讨论思想的应用最为广泛,成为检测学生分析问题和解决问题能力的常见题型。
分类讨论是在解题过程中,将某一数学对象根据它本身的本质属性,按照一定的原则或标准分成若干类,然后逐类进行讨论解决,再把这几类的结论汇总,得出问题的答案的一种思想方法;其作用是克服思维的片面性,防止漏解。
常见的分类讨论题有:按数分类(绝对值概念,实数的分类等);按字母的取值范围分类(二次根式的化简,一元二次方程概念中二次项不为0等);按图形的位置分类(如点与直线,直线与圆的位置关系等)。
考查方式有填空题,选择题,综合题,特别是在中考压轴题中,往往涉及分类讨论思想。
【例题讲解】例1 、若0322=+--+b a b a x x 是关于x 的一元二次方程,求a 、b 的值解答:当⎩⎨⎧=-=+222b a b a 或⎩⎨⎧=-=+122b a b a 或⎩⎨⎧=-=+212b a b a或⎩⎨⎧=-=+012b a b a 或⎩⎨⎧=-=+202b a b a 时,原方程为关于x 的一元二次方程,因此,得⎪⎪⎩⎪⎪⎨⎧-==3234b a 或⎩⎨⎧==01b a 或⎩⎨⎧-==11b a 或⎪⎪⎩⎪⎪⎨⎧==3232b a 或⎪⎪⎩⎪⎪⎨⎧-==3432b a 解析: 结合方程特点,由于 x 2a+b 项的次数是2a+b , -2x a -b项的次数是a – b,因而考虑这两个次数至少有一个为2即可,共有五种情况。
按题目的要求解决问题时,考虑问题要全面周到,要把所有可能的情况进行穷举,避免出现少解或漏解的情况。
例2、(04年贵阳市)如图,AB 是半圆O 的直径,BC是弦,点P 从点A 开始沿AB 边向点B 以每秒1㎝的速度移动,若AB 长为10㎝,点O 到BC 的距离为4㎝。
(1) 求弦BC 的长;(2) 问经过几秒后,△BPC 是等腰三角形。
分类讨论综合型问题
1.(2013·杭州)给出下列命题及函数y =x ,y =x 2
和y =1x ,
①如果1a >a >a 2,那么0<a <1;
②如果a 2>a >1a ,那么a >1;
③如果1a >a 2>a ,那么-1<a <0;
④如果a 2>1a >a 时,那么a <-1.
则 ( )
A .正确的命题是①④
B .错误的命题是②③④
C .正确的命题是①②
D .错误的命题只有③
2.(2013·杭州)已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B
在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数y 2=43x +n 的图
象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.
3.(2012·广州)如图,抛物线y =-38x 2-34x +3与x 轴
交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点
C .
(1)求点A ,B 的坐标;
(2)设D 为已知抛物线的对称轴上的任意一点,当△
ACD 的面积等于△ACB 的面积时,求点D 的坐标;
(3)若直线l 过点E (4,0),M 为直线l 上的动点,当
以A ,B ,M 为顶点所作的直角三角形有且只有两个时,求直线l 的解析式.
【能力提升】
4.(2012·绍兴)如图,矩形OABC的两边在坐标轴上,连
接AC,抛物线y=x2-4x-2经过A,B两点.
(1)求A点的坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边
向点B移动,1秒后点Q也由点A出发以每秒7个单
位的速度沿AO,OC,CB边向点B移动,当其中一
个点到达终点时另一个点也停止移动,点P的移动时
间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的
纵坐标的取值范围.
5.(2012·福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0),B(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共
点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出
所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
6.(2010·宁波)如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的
坐标为(-2,0),点D的坐标为(0,23),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为33,请直接写出点F的坐标.。