正弦、余弦函数的奇偶性、单调性
- 格式:ppt
- 大小:975.00 KB
- 文档页数:16
1.4.2.2三角函数的图象与性质-----正弦函数、余弦函数的奇偶性及单调性一、 [教学目标]1、正弦函数、余弦函数的奇偶性;2、正弦函数、余弦函数的单调性;3、正弦函数、余弦函数的值域.二、[教学重点、难点、疑点]重点:掌握正弦函数、函数的奇偶性、单调性、值域.难点:正弦函数、余弦函数义域上的单调性.三、 [教学过程](一)复习旧知:1. 偶函数(even function )一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.偶函数的图象关于y 轴对称。
例如:()2x x f =2.奇函数(odd function )一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点对称。
例如:()3f x x =3.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间4.周期函数是怎样定义的?对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x +T)=f(x), 那么函数f(x)就叫做周期函数,非零常数T 就叫做这个函数的周期.因为正弦函数、余弦函数为周期函数,所以只要把握了一个周期内的性质,整个定义域内的性质也就很清楚了,因此下面研究x ∈[0,2π]的性质.(二)探究新知:1、正余弦函数的奇偶性请同学们观察正弦曲线、余弦曲线.-4π -3π -2π -π -1 π 2π 3π 4π它们的图象从对称性上有何特征?生:正弦曲线f(x)=sinx ,x ∈R 的图象关于原点对称,余弦曲线f(x)=cosx , x ∈R 的图象关于y 轴对称.师:根据它们的图象特征,你能否确定它们的奇偶性?并证明你的结论. 生:f(x)=sinx ,x ∈R 是奇函数,证明如下f(-x)=sin(-x)=-sinx=-f(x), ∴f(x)=sinx ,x ∈R 为奇函数.f(x)=cosx ,x ∈R 是偶函数,证明如下:f(-x)=cos(-x)=cosx=f(x),∴f(x)=cosx ,x ∈R 为偶函数.2、正弦函数、余弦函数的单调性师:观察正弦曲线可以看出:当x 由-2π增大到2π时,曲线逐渐上升,sinx 的值由-1增大到1,当x 由2π增大到23π时,曲线逐渐下降,sinx 的值由1减小到-1,由正弦函数的周期性可知.正弦函数在每一个闭区间[2π+2k π,23π+2k π](k ∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z)上都是减函数,其值从1减小到-1.师:类似地,我们可得到余弦函数的单调性:请同学们自主学习,并在课本P38 上对应填写余弦函数的单调性有关内容余弦在每一个闭区间[(2k-1),2k π](k ∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[2k π, (2k+1)](k ∈Z)上都是减函数,其值从1减小到-1.3、正弦函数、余弦函数的最大值、最小值.请同学们分组学习,并在课本P38 上对应填写余弦函数的单调性有关内容(三) 理论迁移:例1:判定函数y=-sinx , x ∈R 的奇偶性例2 利用三角函数的单调性,比较下列各组数的大小。
小学数学中的三角函数初步三角函数是小学数学中的重要内容之一。
它是描述角度和边长之间关系的数学工具。
通过学习三角函数,可以帮助学生深入理解角的概念,并应用于各种实际问题中。
一、三角函数的定义三角函数包括正弦函数、余弦函数和正切函数。
在初步学习中,我们主要关注正弦函数和余弦函数的定义。
1. 正弦函数(sin):在直角三角形中,正弦函数定义为:三角形的一条直角边与斜边的比值。
即sinA = 对边/斜边。
2. 余弦函数(cos):在直角三角形中,余弦函数定义为:三角形的另一条直角边与斜边的比值。
即cosA = 邻边/斜边。
这两个定义是初学者理解三角函数的基础。
通过计算三角形中的边长比值,我们可以得到一个0到1的比例值,用以表示角度大小。
二、三角函数的性质学习三角函数,我们需要了解它们的一些基本性质。
以下是几个重要的性质:1. 周期性:三角函数具有周期性,即函数值在一定区间内重复。
以正弦函数为例,它的周期是360度或2π弧度。
也就是说,sin(A+360n) = sinA,其中n为整数。
2. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA;而余弦函数是偶函数,即cos(-A) = cosA。
这意味着正弦函数关于原点对称,而余弦函数关于y轴对称。
3. 单调性:在某个区间内,正弦函数和余弦函数的函数值是单调变化的。
例如,在0到90度的区间内,正弦函数值不断增加,而余弦函数值不断减小。
三、三角函数的应用三角函数的应用广泛,不仅在数学中有重要作用,还涉及到物理、工程、天文等领域。
以下列举几个常见的应用场景:1. 三角函数在测量中的应用:三角函数被用于测量高度、距离和角度等。
例如,在测量一座高楼的高度时,我们可以利用三角函数和测量仪器的数据,通过计算出两个角的大小,从而得到高楼的高度。
2. 三角函数在建筑中的应用:在建筑领域,三角函数常被用于计算斜坡、屋顶的角度等。
通过应用三角函数,可以确保建筑物的结构合理且稳定。
最新人教版小学四年级数学上册教案认识正弦函数与余弦函数的性质一、引言在小学四年级数学上册中,我们将介绍正弦函数与余弦函数的性质。
正弦函数和余弦函数是数学中的基本函数,它们在几何图形的描述、物理学、工程学等领域中扮演着重要的角色。
通过认识正弦函数和余弦函数的性质,我们能够更好地理解和应用它们。
二、正弦函数的性质1. 周期性正弦函数是周期函数,它的周期为2π(或360°)。
也就是说,正弦函数的图像以2π为一个完整的周期。
我们可以通过绘制正弦函数的图像来观察其周期性。
2. 奇偶性正弦函数是奇函数,即满足f(x) = -f(-x)。
奇函数的图像关于原点对称。
在数学上,我们可以用代数表达式来证明正弦函数的奇偶性。
3. 取值范围正弦函数的取值范围在[-1, 1]之间。
也就是说,对于任意实数x,正弦函数的值都在-1和1之间。
4. 单调性正弦函数在每个周期内是周期单调递增的。
也就是说,在一个周期内,随着自变量的增大,函数值也随之增大。
5. 零点正弦函数的零点为x = kπ(或k×180°,其中k为整数)。
也就是说,正弦函数在每个周期内都有无数个零点。
三、余弦函数的性质1. 周期性余弦函数也是周期函数,它的周期为2π(或360°)。
也就是说,余弦函数的图像以2π为一个完整的周期。
与正弦函数相比,余弦函数的图像关于y轴对称。
2. 奇偶性余弦函数是偶函数,即满足f(x) = f(-x)。
偶函数的图像关于y轴对称。
和正弦函数一样,我们可以通过代数表达式来证明余弦函数的奇偶性。
3. 取值范围余弦函数的取值范围也在[-1, 1]之间,与正弦函数相同。
4. 单调性余弦函数在每个周期内是周期单调递减的。
也就是说,在一个周期内,随着自变量的增大,函数值逐渐减小。
5. 零点余弦函数的零点为x = (2k + 1)π/2(或(2k + 1)×90°,其中k为整数)。
和正弦函数一样,余弦函数在每个周期内也有无数个零点。
正弦函数、余弦函数的性质周期性;单调性、奇偶性知识与技能:能理解周期函数、周期函数的周期和最小正周期的定义;并能求出正、余弦函数的最小正周期。
了解两函数的单调性和单调区间。
会判断正余弦的奇偶性,了解其图象的对称性。
过程与方法:借助图像理解正弦函数、余弦函数的周期性、单调性、奇偶性情感与态度:体会三角函数在解决具有周期变化规律问题中的作用及单调性、奇偶性的应用教学过程:一、问题情境复习:y=sinx y=cosx (x R)的图象二、提出问题:正弦函数、余弦函数的性质之二——周期性1.(观察图象) 1正弦函数、余弦函数的图象是有规律不断重复出现的;2规律是:每隔2重复出现一次(或者说每隔2k,k Z重复出现)3这个规律由诱导公式sin(2k+x)=sinx, cos(2k+x)=cosx也可以说明结论:象这样一种函数叫做周期函数。
2.周期函数定义:对于函数f (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期。
注意:1周期函数x定义域M,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x0+t) f (x0))3T往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T中最小的正数叫做f (x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx 的最小正周期为2 (一般称为周期)3.y=sin ωx, y=cos ωx 的最小正周期的确定例1. 求下列三角函数的周期:1 y=sin(x+3π) 2 y=cos2x 3 y=3sin(2x +5π) 小结:形如y=Asin(ωx+φ) (A,ω,φ为常数,A 0,x R) 周期T=ωπ2 y=Acos(ωx+φ)也可同法求之例2.P34 例5求f (x )=tan2x 的周期例3.求下列函数的周期: 1y=sin(2x+4π)+2cos(3x-6π) 2y=|sinx| 3 y=23sinxcosx+2cos 2x-1三、问题;你能根据图象还会发现其它性质吗?1.奇偶性2.对称性:y=sinx 的所有对称轴为--------;对称中心为-----------例4求函数(1)y=sin (2x+3π)的单调增区间;(2)y=3cos 2x 的单调区间四、师生共同小结:周期函数的定义,周期,最小正周期奇偶性、奇偶性五、作业:补充:求下列函数的最小正周期:1.y=2cos(34π+x )-3sin(4π-x ) 2.y=-cos(3x+2π)+sin(4x-3π) 3.y=|sin(2x+6π)| 4.y=cos 2θsin 2θ+1-2sin 22θ5.若α、β为锐角,sin α<cos β,则α、β满足 ( )A .α>βB .α<βC .α+β<π2D . α+β>π26. 判断下列函数的奇偶性: (1)y= x x x cos 1tan sin +-; (2)y=.cos sin 1cos sin 1x x x x ++-+。
三角函数正弦余弦正切三角函数是数学中的重要概念,包括正弦、余弦和正切。
它们在数学、物理和工程等领域有广泛的应用。
本文将对三角函数的定义、性质和应用进行详细论述。
一、正弦函数正弦函数是三角函数中的一种,表示为sin(x),其中x为角度。
正弦函数的定义域是实数集,值域为[-1, 1]。
正弦函数具有以下性质:1. 周期性:正弦函数是周期函数,其最小正周期是2π,即sin(x) = sin(x+2πk),其中k为整数。
2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于y轴对称。
3. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,正弦函数在每个周期内都是单调递增或单调递减的。
5. 正弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
正弦函数在几何、物理、电路等领域有广泛的应用,如波动、振动、交流电等的描述和计算中都会用到。
二、余弦函数余弦函数是三角函数中的另一种,表示为cos(x),其中x为角度。
余弦函数的定义域是实数集,值域为[-1, 1]。
余弦函数具有以下性质:1. 周期性:余弦函数是周期函数,其最小正周期是2π,即cos(x) = cos(x+2πk),其中k为整数。
2. 对称性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于y轴对称。
3. 奇偶性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,余弦函数在每个周期内都是单调递减的。
5. 余弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
余弦函数在几何、物理、信号处理等领域有广泛的应用,如描述分析力学中的运动规律、计算交流电路中的电流和电压等。
三、正切函数正切函数是三角函数中的另一种,表示为tan(x),其中x为角度。
正切函数的定义域是实数集,值域为整个实数集。
正弦函数余弦函数的性质(单调性)正弦函数和余弦函数是高中数学中常见的函数,它们具有许多重要的性质。
单调性是其中之一。
本文将重点介绍正弦函数和余弦函数的单调性,希望能对读者加深对这两个函数的理解。
我们先来介绍一下正弦函数和余弦函数的定义。
正弦函数记作y=sin(x),其中x表示自变量,y表示函数值。
余弦函数记作y=cos(x),同样x表示自变量,y表示函数值。
这两个函数都是周期函数,其周期为2π。
下面我们分别来介绍它们的单调性。
正弦函数的单调性:正弦函数在每一个周期内都是先增后减或者先减后增的。
具体来说,当自变量x增大时(在0到π/2之间),y=sin(x)也逐渐增大,当自变量x继续增大(在π/2到π之间),y=sin(x)逐渐减小,当自变量x继续增大(在π到3π/2之间),y=sin(x)又逐渐增大,以此类推。
从图上来看,正弦函数的图像会呈现出一种周期性的波动,这体现了正弦函数的周期性。
我们可以得出结论,正弦函数在每一个周期内都是先增后减或者先减后增的。
正弦函数和余弦函数在各自的周期内的单调性是不同的。
正弦函数是先增后减或者先减后增的,而余弦函数是先减后增或者先增后减的。
这也是因为正弦函数和余弦函数的定义和性质不同所导致的。
通过对这两个函数的单调性进行分析,可以帮助我们更好地理解它们的规律和特点。
除了单调性以外,正弦函数和余弦函数还有许多其他重要的性质,比如周期性、奇偶性、图像特点等。
这些性质都是我们在学习和应用这两个函数时需要重点关注的内容。
希望通过本文的介绍,读者能够对正弦函数和余弦函数的单调性有更清晰的认识,并能够更好地应用这些知识解决实际问题。
高等数学中的三角函数数学是自然科学中的一门基础学科,具有广泛的理论应用价值。
作为数学的一个分支,三角函数是高等数学中最基本的概念之一。
在各个领域中,三角函数都有着非常重要的应用,如物理学、工程学、天文学、地球物理学等。
本文将为您详细介绍高等数学中的三角函数。
一、基本概念三角函数指的是由单位圆上的一点P(x,y)到x轴的垂线段OA和P到原点的线段OP的比值构成的函数关系。
其中,x的取值范围为实数集合,y的取值范围为[-1,1]。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)、余割函数(csc)。
另外,它们的倒数cos、sin、cot、tan、csc、sec也是有用的三角函数。
二、性质在高等数学中,三角函数具有一些基本性质,如周期性、奇偶性、单调性等。
1. 周期性:正弦函数和余弦函数的周期均为2π,即f(x+2π)=f(x),而正切函数和余切函数的周期均为π,即f(x+π)=f(x)。
2. 奇偶性:正弦函数为奇函数,即sin(-x)=-sin(x),余弦函数为偶函数,即cos(-x)=cos(x)。
而正切函数、余切函数、正割函数和余割函数均为奇偶不定的函数。
3. 单调性:正弦函数和余弦函数均为周期为2π的函数,在一个周期内其均在[-1,1]区间内单调递增、递减,且在各自的最大、最小值处导数为0。
而正切函数、余切函数、正割函数和余割函数则不具有单调性。
三、公式定理三角函数在高等数学中具有非常重要的公式定理,包括和差公式、倍角公式、三倍角公式、万能公式以及欧拉公式等等。
1. 和差公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb2. 倍角公式:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x=2cos^2x-1,tan2x=(2tanx)/(1-tan^2x)3. 三倍角公式:sin3x=3sinx-4sin^3x,cos3x=4cos^3x-3cosx4. 万能公式:sin^2x+cos^2x=1, tanx=sinx/cosx, 1+tan^2x=sec^2x, 1+cot^2x=csc^2x5. 欧拉公式:e^ix=cosx+isinx,e^-ix=cosx-isinx四、应用领域三角函数在各个领域中都有广泛的应用。
专题37 正、余弦函数的周期性、奇偶性、单调性和最值考点1 正弦函数、余弦函数的周期性1.如果函数y=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么()A.T=2,θ=π2B.T=1,θ=πC.T=2,θ=πD.T=1,θ=π2【答案】A【解析】由题意得sin(2π+θ)=1,又0<θ<2π,∴θ=π2,最小正周期T=2ππ=2.2.下列是定义在R上的四个函数图象的一部分,其中不是周期函数的是()A.B.C.D.【答案】D【解析】对于D,x∈(-1,1)时的图象与其他区间图象不同,不是周期函数.3.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期为π,且当x∈[−π2,0)时,f(x)=sin x,则f(−5π3)的值为()A.-12B.12C.-√32D.√32【答案】D【解析】f(−5π3)=f(π3)=-f(−π3)=-sin(−π3)=sinπ3=√32.4.设函数f(x)=sinπ3x,则f(1)+f(2)+f(3)+…+f(2013)=________. 【答案】√3【解析】∵f(x)=sinπ3x的周期T=2ππ3=6.∴f(1)+f(2)+f(3)+…+f(2013)=335[f(1)+f(2)+f(3)+f(4)+f (5)+f(6)]+f(2011)+f(2012)+f(2013)=335·(sinπ3+sin23π+sinπ+sin43π+sin53π+sinπ)+f(335×6+1)+f(335×6+2)+f(335×6+3)=335×0+f(1)+f(2)+f(3)=sinπ3+sin23π+sinπ=√3.考点2 正弦函数、余弦函数的奇偶性5.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+π2)B.y=cos(2x+π2)C.y=sin2x+cos2xD.y=sin x+cos x【答案】B【解析】由于函数y=sin(2x+π2)=cos2x为偶函数,故排除A;由于函数y=cos(2x+π2)=-sin2x为奇函数,且周期为2π2,故B满足条件;由于函数y=sin2x+cos2x=√2sin(2x+π4)为非奇非偶函数,故排除C;由于函数y=sin x+cos x=√2sin(x+π4)为非奇非偶函数,故排除D,故选B.6.下列命题中正确的是()A.y=-sin x为奇函数B.y=|sin x|既不是奇函数也不是偶函数C.y=3sin x+1为偶函数D.y=sin x-1为奇函数【答案】A【解析】y=|sin x|是偶函数,y=3sin x+1与y=sin x-1都是非奇非偶函数. 7.设f(x)=12sin(2x+φ)(φ是常数).(1)求证:当φ=π2时,f(x)是偶函数;(2)求使f(x)为偶函数的所有φ值的集合.【答案】(1)证明当φ=π2时,f(x)=12sin(2x+π2)=12cos2x,f(-x)=f(x),f(x)是偶函数.(2)解由题意:f(-x)=f(x),可得12sin(-2x+φ)=12sin(2x+φ)对一切实数x成立,-2x+φ=2x+φ+2kπ或-2x+φ=π-(2x+φ)+2kπ,k∈Z,对一切实数x成立,所以φ=k π+π2,k ∈Z ,f (x )为偶函数的φ值的集合是{φ|φ=k π+π2,k ∈Z }. 8.函数f (x )=sin (ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数. (1)求φ的值.(2)若f (x )图象上的点关于M (3π4,0)对称,①求ω满足的关系式;②若f (x )在区间[0,π2]上是单调函数,求ω的值.【答案】(1)由f (x )是偶函数,可得f (0)=±1, 故sin φ=±1,即φ=k π+π2, 结合题设0≤φ≤π,解得φ=π2.(2)由(1)知f (x )=sin (ωx +π2)=cos ωx , ∵f (x )图象上的点关于M (34π,0)对称,∴f (34π)=cos 34ωπ=0,故34ωπ=k π+π2(k ∈Z ), 即w =23(2k +1),k =0,1,2,…∵f (x )在区间[0,π2]上是单调函数,可得π2≤12·2πω,即ω≤2, 又∵ω=23(2k +1),k =0,1,2,… ∴综合以上条件,可得ω=23或ω=2. 9.f (x )=2√3sin (3ωx +π3)(ω>0).(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值; (2)在(1)的条件下求函数f (x )在[−π2,π3]的值域.【答案】(1)由于f (x )=2√3sin (3ωx +π3),可得f (x +θ)=2√3sin[3ω(x +θ)+π3]=2√3sin (3ωx +3ωθ+π3), 再根据f (x +θ)是周期为2π的偶函数,可得2π3ω=2π,3ωθ+π3=k π+π2,k ∈Z . 求得ω=13,θ=k π+π6,f (x )=2√3sin (x +π3). (2)由x ∈[−π2,π3],可得x +π3∈[-π6,2π3],故当x +π3=-π6时,f (x )取得最小值为-√3,当x +π3=π2时,f (x )取得最大值为2, 故函数f (x )的值域为[-√3,2√3]. 考点3 正弦函数、余弦函数的单调性10.函数y =sin (-2x +π3)在区间[0,π]上的单调递增区间为( ) A .[5π12,11π12] B .[0,5π12] C .[π6,2π3] D .[2π3,π] 【答案】A【解析】y =sin (-2x +π3)=-sin (2x -π3), 当2k π+π2≤2x -π3≤2k π+3π2,即k π+5π12≤x ≤k π+11π2时,k ∈Z ,函数单调递增,∴函数在区间[0,π]上的单调递增区间为[5π12,11π12].11.函数y =lgsin (π6−2x)的单调递减区间是( )A .(kπ−π6,kπ+π3)(k ∈Z )B .(kπ+π3,kπ+5π6)(k ∈Z )C .(kπ−π6,kπ+π12)(k ∈Z )D.(kπ−7π12,kπ+5π6)(k∈Z)【答案】C【解析】令sin(π6−2x)>0,即sin(2x−π6)<0,由此得2kπ-π<2x-π6<2kπ,k∈Z,解得kπ-5π12<x<kπ+π12,k∈Z,由复合函数的单调性知,求函数y=lgsin(π6−2x)的单调递减区间即是求t=sin(π6−2x)=-sin(2x−π6)单调递减区间,令2kπ-π2<2x-π6<2kπ+π2,解得kπ-π6<x<kπ+π3,k∈Z,{x|kπ-π6<x<kπ+π3,k∈Z}∩{x|kπ-5π12<x<kπ+π12,k∈Z}=(kπ−π6,kπ+π12)(k∈Z).12.设函数f(x)=sin(ωx+π2)(ω>0)的最小正周期为π,则f(x)()A.在(0,π2)单调递减B.在(π4,3π4)单调递减C.在(0,π2)单调递增D.在(π4,3π4)单调递增【答案】A【解析】∵函数f(x)=sin(ωx+π2)(ω>0)的最小正周期为π,∴π=2πω,ω=2.∴f(x)=sin(2x+π2),由2kπ+π2≤2x+π2≤2kπ+3π2,k∈Z,可得k π≤x ≤k π+π2,k ∈Z ,当k =0时,函数f (x )=sin (2x +π2)在(0,π2)单调递减. 13.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 【答案】C【解析】∵sin168°=sin (180°-12°)=sin12°,cos10°=sin (90°-10°)=sin80°. 由正弦函数的单调性得sin11°<sin12°<sin80°, 即sin11°<sin168°<cos10°. 14.已知函数f (x )=2sin (2x -π3),x ∈R , (1)求函数f (x )的最小正周期; (2)求函数f (x )的单调区间.【答案】(1)根据三角函数的周期公式可得周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z ,故函数的单调递增区间为[k π-π12,k π+5π12],k ∈Z , 由π2+2k π≤2x -π3≤3π2+2k π,解得k π+5π12≤x ≤k π+11π12,k ∈Z ,故函数的单调递减区间为[k π+5π12,k π+11π12],k ∈Z . 15.已知函数f (x )=√2sin (2x +π4)-1,x ∈R . (1)求函数f (x )的最小正周期; (2)求函数f (x )的单调递增区间; (3)求函数f (x )的最值.【答案】(1)由周期公式T =2πω,得T =2π2=π, ∴函数f (x )的最小正周期为π;(2)令-12π+2k π≤2x +π4≤12π+2k π,k ∈Z , ∴k π-38π≤x ≤k π+18π,k ∈Z ,∴函数的单调递增区间为[k π-38π,k π+18π](k ∈Z ). (3)根据正弦函数的性质可知,-1≤sin (2x +π4)≤1, ∴-√2≤√2sin (2x +π4)≤√2,∴-√2-1≤√2sin (2x +π4)-1≤√2-1, ∴函数的最大值为√2-1,最小值为-√2-1. 16.已知函数f (x )=sin (2x -π3). (1)求f (x )的单调增区间; (2)求f (x )取最大值时x 值的集合;(3)函数y =f (x )-m 在[0,π2]上有零点,求m 的取值范围. 【答案】(1)∵函数f (x )=sin (2x -π3), 令-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z ,∴函数f (x )的增区间为[-π12+k π,5π12+k π],k ∈Z .(2)令2x -π3=π2+2k π,k ∈Z , 解得x =5π12+k π,k ∈Z , 此时f (x )=1.∴f (x )取得最大值时x 的集合是{x |x =5π12+k π,k ∈Z }.(3)当x ∈[0,π2]时,2x -π3∈[-π3,2π3], ∴-√32≤sin (2x -π3)≤1,∴函数y =f (x )在x ∈[0,π2]上的值域是[-√32,1],若函数y =f (x )-m 在x ∈[0,π2]上有零点,则m 的取值范围是-√32≤m ≤1.考点4 正弦函数、余弦函数的最值17.下列函数中,与函数y =√x 3定义域相同的函数为( )A .y =1sinx B .y =lnx xC .y =x e xD.y=sinxx【答案】D【解析】∵函数y=√x3的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满足;对于B,其定义域为{x|x>0},故B不满足;对于C,其定义域为{x|x∈R},故C不满足;对于D,其定义域为{x|x≠0},故D满足.18.函数y=cos(x+π6),x∈[0,π2]的值域是()A.[−√32,12]B.[−12,√32]C.[√32,1]D.[12,1]【答案】B【解析】∵0≤x≤π2,∴π6≤x+π6≤2π3.∴cos2π3≤cos(x+π6)≤cosπ6,∴-12≤y≤√32,故选B.19.已知函数f(x)=2sin(2x+π6)-1(x∈R),则f(x)在区间[0,π2]上的最大值与最小值分别是()A.1,-2B.2,-1C.1,-1D.2,-2【答案】A【解析】∵0≤x≤π2,∴π6≤2x+π6≤7π6,∴当2x+π6=π2时,即sin(2x+π6)=1时,函数取得最大值为2-1=1,当2x+π6=7π6时,即sin(2x+π6)=-12时,函数取得最小值为-12×2-1=-2.20.函数y=sin x的定义域为[a,b],值域为[−1,12],则b-a的最大值和最小值之和等于()A.4π3B.8π3C.2πD.4π【答案】C【解析】利用函数y=sin x的图象知(b-a)min=2π3,(b-a)max=4π3,故b-a的最大值与最小值之和等于2π.21.函数y=cosωx(ω>0)在区间[0,1)上至少出现2次最大值,至多出现3次最大值,则ω的取值范围是()A.2π≤ω≤4πB.2π<ω≤4πC.2π<ω≤6πD.2π<ω<6π【答案】C【解析】∵函数y=cosωx(ω>0)的周期为T=2πω,且在区间[0,1)上至少出现2次最大值,至多出现3次最大值, ∴13≤T <1,即13≤2πω<1, 解得2π<ω≤6π.22.设f (x )=2cos (π4x +π3),若对任意的x ∈R ,恒有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值是( ) A .4 B .3 C .2 D .1 【答案】A【解析】∵f (x 1)≤f (x )≤f (x 2),∴x 1、x 2是函数f (x )取最大、最小值时对应的x 的值, 故|x 1-x 2|一定是T2的整数倍,∵f (x )=2cos (π4x +π3)的最小正周期T =2ππ4=8,∴|x 1-x 2|=n ×T2=4n (n >0,且n ∈Z ), ∴|x 1-x 2|的最小值为4.23.函数f (a )=cos 2θ+a cos θ-a (a ∈[1,2],θ∈[π6,π3])的最小值是( ) A .√3−23B .cos 2θ+cos θ-1C.3+(√3-1)a D.cos2θ+2cosθ-2 【答案】D【解析】∵θ∈[π6,π3],∴cosθ-1<0,∴f(a)=cos2θ+a cosθ-a=(cosθ-1)a+cos2θ在[1,2]上单调递减,∴f(a)的最小值为f(2)=cos2θ+2cosθ-2.24.已知f(x)=-2a sin(2x+π6)+2a+b,x∈[π4,3π4],是否存在常数a,b∈Q,使得f(x)的值域为{y|-3≤y≤√3-1}?若存在,求出a,b的值;若不存在,请说明理由.【答案】∵π4≤x≤3π4,∴2π3≤2x+π6≤5π3,∴-1≤sin(2x+π6)≤√32.假设存在这样的有理数a,b,则当a>0时,{−√3a+2a+b=−3,2a+2a+b=√3−1,解得{a=1,b=√3−5,(不合题意,舍去)当a<0时,{2a+2a+b=−3,−√3a+2a+b=√3−1,解得{a=−1,b=1,故a,b存在,且a=-1,b=1.25.已知函数f(x)=√2a sin(x-π4)+a+b.(1)当a=1时,求函数f(x)的单调递减区间;(2)当a<0时,f(x)在[0,π]上的值域为[2,3],求a,b的值.【答案】(1)∵当a=1时,f(x)=√2sin(x-π4)+1+b,∴当x-π4∈[π2+2kπ,3π2+2kπ],k∈Z时,函数f(x)的单调递减区间是[3π4+2kπ,7π4+2kπ],k∈Z.(2)∵f(x)在[0,π]上的值域为[2,3],∴不妨设t=x-π4,x∈[0,π],t∈[-π4,3π4],∴f(x)=g(t)=√2a sin t+a+b,∴f(x)max=g(-π4)=-a+a+b=3,①f(x)min=g(π2)=√2a+a+b=2,②∴由①②解得,a=1-√2,b=3.26.(1)求函数y=2-cos x3的最大值和最小值,并分别写出使这个函数取得最大值和最小值的x的集合;(2)求函数y=cos2x-4cos x+1,x∈[π3,23π]的值域.【答案】(1)令z=x3,∵-1≤cos z≤1,∴1≤2-cos z≤3,∴y=2-cos x3的最大值为3,最小值为1.当z=2kπ,k∈Z时,cos z取得最大值,2-cos z取得最小值,又z=x3,故x=6kπ,k∈Z.∴使函数y=2-cos x3取得最小值的x的集合为{x|x=6kπ,k∈Z};同理,使函数y=2-cos x3取得最大值的x的集合为{x|x=6kπ+3π,k∈Z}.(2)∵x∈[π3,23π],∴-12≤cos x≤12.∵y =cos 2x -4cos x +1=(cos x -2)2-3, ∴当cos x =-12时,y max =134; 当cos x =12时,y min =-34,∴y =cos 2x -4cos x +1的值域为[−34,134].27.已知函数f (x )=sin (2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),求f (x )的单调递增区间.【答案】由f (x )≤|f (π6)|对x ∈R 恒成立知,2×π6+φ=2k π±π2(k ∈Z ), 得到φ=2k π+π6或φ=2k π-5π6,k ∈Z .代入f (x )并由f (π2)>f (π)检验,得φ的取值为-5π6, 由2k π-π2≤2x -5π6≤2k π+π2,k ∈Z , 得k π+π6≤x ≤k π+23π,k ∈Z ,所以单调递增区间是[k π+π6,k π+2π3](k ∈Z ). 考点5 正弦函数、余弦函数的综合应用28.函数y =sin (-2x +π4)的单调递增区间是( ) A .[2k π+38π,2k π+78π](k ∈Z ) B .[k π+38π,k π+78π](k ∈Z ) C .[k π-18π,k π+38π](k ∈Z ) D .[k π-58π,k π-18π](k ∈Z )【答案】B【解析】由于函数y =sin (-2x +π4)=-sin (2x -π4),故函数y =sin (-2x +π4)的单调递增区间为函数y =sin (2x -π4)的减区间. 令2k π+π2≤2x -π4≤2k π+3π2,k ∈Z , 求得k π+3π8≤x ≤k π+7π8,k ∈Z ,故所求的函数y =sin (-2x +π4)的单调递增区间是[k π+38π,k π+78π](k ∈Z ). 29.对于函数y =2sin (2x +π6),则下列结论正确的是( ) A .函数的图象关于点(π3,0)对称 B .函数在区间[-π3,π6]递增 C .函数的图象关于直线x =-π12对称 D .最小正周期是π2 【答案】B【解析】由于点(π3,0)不在函数y =2sin (2x +π6)的图象上,故函数图象不关于点(π3,0)对称,故排除A.令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,故函数的增区间为[-π3,π6],故B 正确.当x =-π12时,函数值y =0,不是最值,故函数的图象不关于x =-π12对称,故排除C. 由函数的解析式可得,最小正周期等于T =2π2=π,故D 不正确. 综上可得,只有B 正确.30.已知函数f (x )=log 12cosπx 3,函数g (x )=a sin (π6·x )-2a +2(a >0),x ∈(0,1),若存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A .(12,43) B .(23,1) C .(43,32) D .[12,43]【答案】A【解析】由于x ∈(0,1),可得f (x )的值域为(0,1),函数g (x )=a ·sin (π6x)-2a +2(a >0)的值域为(2-2a,2-3a2), 由于存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立, 故(0,1)∩(2-2a,2-3a 2)≠∅,若(0,1)∩(2-2a,2-3a2)=∅,则有2-2a ≥1或2-3a2≤0. 解得a ≤12或a ≥43,故a 的范围为(12,43).31.函数f (x )=M sin (ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +φ)在[a ,b ]上( ) A .是增函数 B .是减函数C .可以取得最大值M ,可以取得最小值-MD .可以取得最大值M ,没有最小值 【答案】C【解析】∵函数f (x )在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M . 采用特殊值法,令ω=1,φ=0,则f (x )=M sin x ,设区间为[-π2,π2].∵M >0,g (x )=M cos x 在[-π2,π2]上不具备单调性,但有最大值M .32.设f (x )=sin (2x +φ),若f (x )≤f (π6)对一切x ∈R 恒成立,则: ①f (-π12)=0;②f (x )的图象关于点(5π12,0)对称;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是[k π+π6,k π+2π3](k ∈Z ). 以上结论正确的是________(写出所有正确结论的编号). 【答案】①②③【解析】∵f (x )≤f (π6)对一切x ∈R 恒成立,∴f (x )=sin (2x +φ)在x =π6时取得最大值,即2×π6+φ=π2+2k π,k ∈Z ,得φ=π6+2k π,k ∈Z ,因此函数表达式为f (x )=sin (2x +π6+2k π),∵f (-π12)=sin[2×(-π12)+π6+2k π]=sin2k π=0,故①是真命题; ∵f (5π12)=sin (2×5π12+π6+2k π)=sin (π+2k π)=0,∴x =5π12是函数y =f (x )的零点,得点(5π12,0)是函数f (x )图象的对称中心,故②是真命题;∵函数y =f (x )的图象既不关于y 轴对称,也不关于原点对称,∴f (x )既不是奇函数也不是偶函数,故③是真命题;令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,∴f(x)的单调递增区间是[-π3+kπ,π6+kπ](k∈Z),故④是假命题.由以上的讨论,可得正确命题为①②③,共3个,故答案为①②③.33.已知函数f(x)=√2cos(2x-π4),x∈R. (1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x的值.【答案】(1)f(x)的最小正周期T=2π|ω|=2π2=π.当2kπ≤2x-π4≤2kπ+π,即kπ+π8≤x≤kπ+5π8,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+π8,kπ+5π8],k∈Z.(2)∵x∈[-π8,π2],则2x-π4∈[-3π4,3π4],故cos(2x-π4)∈[-√22,1],∴f(x)max=√2,此时2x-π4=0,即x=π8;f(x)min=-1,此时2x-π4=-3π4,即x=-π4.34.设函数f(x)=√1-2sinx.(1)求函数f(x)的定义域;(2)求函数f(x)的值域及取最大值时x的值.【答案】(1)由1-2sin x≥0,根据正弦函数图象知,定义域为{x|2kπ+5π6≤x≤2kπ+13π6,k∈Z}.(2)∵-1≤sin x≤1,∴-1≤1-2sin x≤3,∵1-2sin x≥0,∴0≤1-2sin x≤3,∴f(x)的,k∈Z时,f(x)取得最大值.值域为[0,√3],当x=2kπ+3π2。