正弦函数余弦函数的单调性
- 格式:ppt
- 大小:228.00 KB
- 文档页数:13
正弦函数和余弦函数是周期函数,它们的单调性极为重要,它们的单调性决定了函数的性质,也是函数图形及表示形式的基础.
正弦函数是关于直角坐标系x轴的周期函数,其表达式为y=sin x,它的定义域为[-π,π], x轴上的值是周期性变化的,当x=0时,y=0,当x=π/2时,y=1,当x=π时,y=-1,其余的点也是类似的,它的单调性是递增的.
余弦函数也是关于x轴的周期函数,其表达式为y=cos x,它的定义域也是[-π,π],其形状和正弦函数类似,只是它的单调性是递减的,当x=0时,y=1,当x=π/2时,y=0,当x=π时,y=-1,它的单调性是递减的.
正弦函数和余弦函数都是周期函数,它们的单调性分别是递增和递减.它们的单调性决定了函数的性质,也是函数图形及表示形式的基础.它们也提供了许多实用的应用,在物理、工程、数学等方面都有广泛的应用,从而为科学技术发展做出了重要的贡献.。