易错提醒:求函数 y=Asin(ωx+φ)的单调区间时,把 ωx+φ 看作一个整体,借助 y=sin x 的单调区间来解决.当 A<0 或 ω<0 时,要注意原函数的单调性与函数 y=sin x 的单调性的关系.
【跟踪训练】 1.变式练将本例(2)变为:求函数 y=2cos( -x)的单调递 增区间. 解:y=2cos( -x)=2cos(x- ), 由 2kπ+π≤x- ≤2kπ+2π,k∈Z, 得 2kπ+ ≤x≤2kπ+ ,k∈Z. 所以原函数的单调递增区间是[2kπ+ ,2kπ+ ](k∈Z).
解析:当 sin x=-1,即 x=- +2kπ,k∈Z 时, 函数 y=2-sin x 取得最大值 3.
4.函数 y=3-2cos( x+ )的最大值为 5 , 此时自变量 x 的 取值是 3kπ+π,k∈Z .
解析:当 cos( x+ )=-1 时,ymax=3-2×(-1)=5.此时自变量 x=3kπ+π,k∈Z.
所以 ≤ω≤ ,故选 C. 答案:C
探索点二 比较三角函数值大小问题 【例 2】 比较下列各组数的大小:
(1)cos(- )与 cos(- );(2)sin 194°与 cos 160°.
【解题模型示范】
【跟踪训练】 4.cos 1,cos 2,cos 3 的大小关系是cos 1>cos 2>cos 3.(用 “>”连接)
课堂建构
解:(1)因为-1≤sin 2x≤1, 所以-2≤-2sin 2x≤2,所以 1≤3-2sin 2x≤5, 所以函数 y=3-2sin 2x 的值域是[1,5].
(2)由 y=cos(x+ ),x∈[0, ],得 x+ ∈[ , ].