9.1.1不等式及其解集
- 格式:ppt
- 大小:460.00 KB
- 文档页数:10
课题:9.1.1不等式及其解集教学设计课题:不等式及其解集课型:新授教材分析:不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础。
它是学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用。
本节是不等式的第一课时,主要学习四个概念:不等式、不等式的解、解集。
同时渗透建模、类比的思想方法。
学习目标:1、了解不等式概念和不等式的解;2、理解不等式的解集,能正确表示不等式的解集;3、培养数感,渗透数形结合的思想.学习重点:不等式的解集的表示;学习难点:不等式解集的确定。
新知探究:(一)探究一:不等式的概念(预习P114,完成下列问题:)问题1:泸州市公交车儿童购票标准:1米1以下儿童免票,1.1(含1.1米)米以上购票。
设儿童身高为x米,如何表示它们?x 1.1 x 1.1问题2:小明的身高为155cm,小聪的身高为156cm。
用“>”“<”或“≠”来表示他们身高之间的关系.156 155 155 156 155 156通过上面两个问题,学生们切实经历了不等式的产生过程,体验到不等式是由于表示不等关系的需要而产生的数学模型。
贴近生活的实例有助于学生感受到数学源于生活。
接着师生进行互动:观察下列式子,x<1.1; x≥1.1; 155<156; 156>155; 155≠156;它们有何特征?你能归纳出不等式的概念吗?(引导学生通过等式的概念类比得出不等式的概念)教师板书归纳:像上面这样用">"或"<"等不等号表示的式子,叫做不等式.同时告诉学生:常见的不等号有: 、、、、教师顺势引出本节课题:9.1.1不等式及其解集练习:1.判断下列各式是不是不等式。
(1)2﹤5;② x+3≠0;③ 4x-2y≤0 ;④ 7n-5≥2;⑤3x+2>0 ; ⑥ 5m+3=8 .2、用不等式表示:①a是正数;② a与5的和大于7;③a 是负数;④a与2的差大于-1;⑤a的4倍不大于8;⑥a的一半小于3.然后启发学生归纳出:列不等式的基本步骤1、确定不等式两边的代数式2、根据所给条件中的关系,选择合适的不等号。
9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。
同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。
学具:圆规、三角尺。
教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。
人教版七年级数学下册9.1.1《不等式及其解集》说课稿一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
在教材中,不等式的概念是通过具体的例子引入的,让学生感受不等式在实际生活中的应用。
不等式的解集是指满足不等式的所有实数的集合,可以用数轴或区间表示。
教材通过例题和练习题的形式,帮助学生理解和掌握不等式及其解集的概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了有理数、一元一次方程等基础知识,对于数学符号和概念有一定的理解。
但学生对于不等式的概念和解集的表示方法可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对于数轴和区间的表示方法有一定的了解,但需要进一步学习和应用到不等式的解集中。
因此,在教学过程中,教师需要注重概念的引入和学生的实际操作,帮助学生建立起不等式和解集的知识体系。
三. 说教学目标1.知识与技能目标:学生能够理解不等式的概念,掌握不等式的解集及其表示方法。
2.过程与方法目标:学生能够通过具体的例子和练习,培养逻辑思维和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学在实际生活中的应用,激发学习数学的兴趣和积极性。
四. 说教学重难点1.教学重点:不等式的概念及其解集的表示方法。
2.教学难点:理解不等式和解集之间的关系,能够运用解集的表示方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,培养学生的逻辑思维和解决问题的能力。
2.教学手段:利用多媒体课件和黑板,进行图文并茂的讲解和演示,帮助学生直观地理解和掌握不等式及其解集的概念和表示方法。
六. 说教学过程1.导入新课:通过具体的例子,引入不等式的概念,激发学生的兴趣和好奇心。
新人教版七年级下9.1.1 不等式及其解集教学内容解析:本节知识属于《义务教育课程标准实验教科书·数学》(人教版)七年级下册第九章不等式与不等式组,教材第114-115页。
本章内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的学习,是进一步探究现实生活中的数量关系,培养学生用数学知识解决实际问题的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式的基础。
本节课的内容主要介绍不等式及不等式的解的概念以及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用。
相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部分,它在解决各类实际问题中有着广泛的应用。
同时,本节知识涉及到建模、转化、数形结合等思想方法。
教学目标1.知识与技能:(1)感受生活中存在大量的不等关系,了解不等式的意义,能将简单的文字问题转化为不等式;(2)理解不等式的解及解集,会找出一个不等式的几个解并且能检验一个数是否是不等式的解;(3)灵活掌握用数轴表示不等式的解集。
2.过程与方法:(1)经历将生活问题转化为数学问题,渗入建模思想,体会到数学源于生活;(2)经历探究不等式的解与解集的不同涵义的过程,渗入数形结合思想,体会到数学服务于生活;(3)通过观察、操作、类比、概括等活动,体会在解决问题的过程中与他人合作的重要性与必要性。
3.情感态度与价值观:通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识和梳理学好数学的自信心。
让学生充分体会到数学源于生活,同时又服务于生活。
学情分析中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。
(1) a+ b=b+a (2)—3>—5 (3) l(4) x 十3>6 (5) 2m v n ( 6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。
注意:像(1 )中分母含有未知数的不等式不是一元一次不等式,这一点与一兀一次方程类似。
(投影)判断下列数中哪些能使不等式2/3x > 50成立:76, 73, 79, 80, 74. 9, 75.1, 90, 6076, 79, 80, 75.1, 90 能使不等式2/3x > 50 成立。
我们把能使不等式成立的未知数的值,叫不等式的解•我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集,与作x >7 5,这个解集可以用数轴来表示。
------ 1 ---------- b--------------------------- k0 75求不等式的解集的过程叫做解不等式.((投影)在数轴上表示下列不等式的解集:(1)x>-1;(2)x > -1;(3)x v -1;(4)x w -1解:------- b----- ■ --------- *■ ------- i ------- 1- --------- 4'1 0 -1 0(1) (2)------ i ------------------ > ------ 1----- 1---------- >0”1Q ( 4)(3)( 4)注意:1.实心点表示包括这个点,空心点表示不包括这个点;2。
步骤:画数轴,定界点,走方向。
§9.1.1不等式及其解集义务教育课程标准实验教科书新人教版七年级下册第九章第1节【教材分析】用不等式表示不等的关系,是代数基础知识的一个重要组成部分,它在解决各类实际问题中有着广泛的应用。
本节内容是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系的重要内容,也是进一步学习不等式知识的基础,旨在增强学生学数学、用数学的意识,体会学数学的价值和意义。
因此,这节课无论在知识上,还是在对学生各种能力的培养及情感教育等方面都起着比较关键的作用。
【学情分析】学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节课就是对“不等”这一概念进一步明确,使它成为一种有效的数学工具。
学生在列不等式时,对数量关系中的“不大于”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,所以教学中应予以简单明白,深入浅出的分析。
另外,学生在老师的指导下能针对某一问题展开讨论并归纳总结,但是受年龄特征的影响,知识迁移能力不强,还需进一步培养。
【教学重点】让学生理解不等式和不等式的解的意义,能正确列出不等式。
【教学难点】准确应用不等号,正确理解不等式的解与解集。
【教学目标】基于上述分析,根据新课标的教学理念,并结合学生已有的认知水平,制定如下的三维目标:(1)知识与技能目标:1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式。
2.正确理解“非负数”、“不小于”等数学术语。
3.理解不等式的解的意义,能举出不等式的几个解并且会检验一个数是否是不等式的解。
(2)过程与方法目标:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性。
(3)情感与态度目标:使学生产生运用知识解决问题的成功体验,树立学好数学的自信心;在独立思考的基础上积极参与讨论,在交流中培养学生的团队意识及合作精神。