初中数学专题 不等式及其解集试题及答案
- 格式:docx
- 大小:85.25 KB
- 文档页数:4
初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
初中数学不等式专题试题及答案A 卷1.不等式2(x + 1) -12732-≤-x x 的解集为_____________。
2.同时满足不等式7x + 4≥5x – 8和523x x -<的整解为______________。
3.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。
4.不等式22)(7)1(3)12(k x x x x ++<--+的解集为_____________。
5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。
6.关于x 的不等式组⎩⎨⎧<->+25332b x x 的解集为-1<x <1,则ab____________。
7.能够使不等式(|x| - x )(1 + x ) <0成立的x 的取值范围是_________。
8.不等式2<|x - 4| <3的解集为_____________。
9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。
10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是94>x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。
B 卷一、填空题1.不等式2|43|2+>--x x x 的解集是_____________。
2.不等式|x| + |y| < 100有_________组整数解。
3.若x,y,z 为正整数,且满足不等式⎪⎩⎪⎨⎧≥+≥≥1997213z y y z x 则x 的最小值为_______________。
4.已知M=1212,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。
初二不等式练习题及答案1. 解不等式2x - 5 < 7。
解:首先将等号左边的表达式变成0,得到2x - 5 - 7 < 0。
然后合并同类项:2x - 12 < 0。
通过对序号相反的两个数字应用不等式规则,得到x < 6。
2. 解不等式3(4 - x) > 5x + 12。
解:首先将括号内的表达式进行分配,得到12 - 3x > 5x + 12。
然后通过对等式两侧的同类项进行移项,得到-3x - 5x > 12 - 12。
合并同类项,得到-8x > 0。
由于8x为负数,所以需要将不等号翻转,得到x < 0。
3. 解不等式2(3x - 1) ≤ 4(x + 2) - 1 + 5x。
解:首先将括号内的表达式进行分配,得到6x - 2 ≤ 4x + 8 - 1 +5x。
合并同类项,得到6x - 2 ≤ 9x + 7。
然后将未知数移动到等号的一侧,得到6x - 9x ≤ 7 + 2。
合并同类项,得到-3x ≤ 9。
由于系数为负数,所以需要将不等号翻转,得到x ≥ -3。
4. 解不等式-2x + 5 > 4 - 3x。
解:首先将未知数移动到等号的一侧,得到-2x + 3x > 4 - 5。
合并同类项,得到x > -1。
5. 解不等式2x - 8 < x + 3。
解:首先将未知数移动到等号的一侧,得到2x - x < 3 + 8。
合并同类项,得到x < 11。
答案:1. x < 62. x < 03. x ≥ -34. x > -15. x < 11通过对初二不等式练习题的解答,我们可以进一步巩固和加深对不等式的理解和应用。
熟练掌握不等式的求解方法和规则,能够帮助我们在数学问题中更加灵活地运用和处理不等式关系,解决实际问题。
中考数学不等式与不等式祖专题训练含答案一、单选题1.若不等式(1)1a x a 的解集是1x <,则a 必满足( ) A .1a <-B .1a >-C .1a <D .1a >2.判断下列各式中不等式有( )个(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -. A .2B .3C .4D .63.x 与3的和的一半是负数,用不等式表示为( ) A .1302x +> B .1302x +<C .()1302x +> D .()1302x +< 4.若关于x 的方程311x ax +=-的解是正数,则a 的取值范围是( ) A .a >﹣1 B .a >﹣1且a ≠0 C .a <﹣1 D .a <﹣1且a ≠﹣35.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .41x x >⎧⎨≤-⎩B .41x x ≤⎧⎨>-⎩C .41x x >⎧⎨>-⎩D .41x x <⎧⎨≥-⎩6x 的取值范围是( ) A .4x ≥B .>4xC .4x ≤D .4x <7.若a >b ,则下列不等式不成立的是( ) A .a +m >b +m B .a (m 2+1)>b (m 2+1) C .22a b -<-D .a 2>b 28.如果不等式组7x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .7m >B .7m ≥C .7m <D .7m ≤9.如果a b >,那么下列式子一定正确的是( ) A .22a b >B .55a b -<-C .510ba > D .22ab ->+10.若a b > ,则下列不等式变形错误的是A .11a b +>+B .22a b > C .D .11.若m <n ,则下列各式中正确的是() A .m -2>n -2B .2m >2nC .-2m >-2nD .22m n > 12.下列说法不正确的是( ) A .2x =-是不等式21x ->的一个解 B .2x =-是不等式21x ->的一个解集 C .728x x ->+与15x <的解集不相同D .3x <-与721x ->的解集相同13.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( ) A .9件B .10件C .11件D .12件14.若整数a 使关于x 的分式方程2311a x x+=--的解为正数,且使关于y 的不等式组21324()0y yy a +⎧->⎪⎨⎪-⎩的解集为2y <-,则符合条件的所有整数a 之和为( ) A .3 B .5 C .7 D .915.对于题目:“已知点A (﹣6,4),B (3,4),若抛物线2121y x x a=-+与线段AB 恰有一个公共点,求a 的取值范围”,嘉嘉的结果是4a ,淇淇的结果是1a >,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .嘉嘉、淇淇的结果合在一起才正确D .嘉嘉、淇淇的结果合在一起也不正确16.适合|2a+5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个17.若()11a x a +>+的解集是1x <,则a 必须满足是( ) A .a<0B .1a >-C .1a <-D .1a ≤18.已知,a b c 、、是实数,且a b >,则以下四个式子中,正确的是( ) A .ac bc >B .22a b -->C .11a b>D .11a b -+-+>19.不等式组30312x x +≥⎧⎨-≤⎩的解集是( )A .x ≤﹣1B .x ≥3C .﹣3≤x ≤1D .﹣3≤x <120.关于x ,y 的方程组21431x y p x y p +=+⎧⎨+=-⎩的解满足x y ≤,则p 的范围是( )A .p ≤52B .p ≥52C .p ≥-52D .p ≤-52二、填空题21.用不等式表示:y 的3倍与1的和大于8;_____________.22.语句“x 的18与y 的和不超过5”可以表示为 _____.23.如果关于x ,y 的二元一次方程组22522x y m x y m +=+⎧⎨+=-+⎩的解满足1x y +>,那么m 的取值范围是_______.24.已知关于x 、y 的方程组3522323x y m x y m +=+⎧⎨+=-⎩的解满足不等式23x y +≥,则m 的取值范围为___.25.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.26.解不等式组()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩,它的解集为___________________.27.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.28.如图所示的不等式的解集是________.29.不等式组1123(7)x x x ≥⎧⎨--⎩>的整数解的和为_____.30.已知式子413a -的值小于2,则a 的最大整数值是_______. 31.不等式组2352x x -≥⎧⎨->-⎩的解集是__________.32.不等式组1012x x x ->⎧⎪⎨+≥⎪⎩的解集是________.33.若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 34.若3x my n =⎧⎨=+⎩和121x m y n =+⎧⎨=-⎩都是方程y =kx +k +1的解,且k <7,则n 的取值范围是______.35.不等式组253(3)121035x x x +<+⎧⎪-⎨+≥⎪⎩的整数解有________个.36.定义运算[x ]表示求不超过x 的最大整数.如[0.5]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣2.5]=﹣3.若[﹣2.5]•[2x ﹣1]=﹣6,则x 的取值范围是 _____. 37.不等式组1221113x x x⎧-≥⎪⎨⎪--⎩>的解集是________.38.已知||4(5)21k k x y ---=是关于x ,y 的二元一次方程,则1k +________(填“是”或“不是”)不等式221x x +<-的解.39.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3 个整数解,那么a 的取值范围是_____.40.据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题41.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.42.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?43.下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 213232x x -->-1. 解:2(2x -1)>3(3x -2)-6……第一步 4x -2>9x -6-6……第二步 4x -9x >-6-6+2……第三步 -5x >-10……第四步 x >2……第五步(1)任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;①第______步开始出现错误,这一步错误的原因是______. (2)任务二:请直接写出该不等式的正确解集.44.解不等式组: 215238x x x x +-⎧<⎪⎨⎪≥-⎩并将解集在如图所示的数轴上表示出来.45.解不等式组: ()12221x x x ->⎧⎪⎨+≥-⎪⎩①②46.解不等式或不等式组,并在数轴上表示解集. (1)5341x x +>-; (2)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩.47.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同. (1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.48.某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?49.萧红中学校去年在商场购买甲、乙两种不同品牌的篮球则买甲种篮球花费1500元,购买乙种篮球花费4000元,购买乙种篮球的数量是购买甲种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花50元(1)求每个甲种篮球和每个乙种篮球的单价各是多少元?(2)为响应国家“五育并举”的号召.今年学校决定再次购买甲、乙两种篮球共60个.恰逢商场这两种篮球的售价进行调整.两种篮球售价比去年购买时提高了20%、乙种篮球售价比去年购买时降低了20%.如果今年购买甲、乙两种篮球的总费用不超过10350元,那么学校今年至少可购买多少个乙种篮球?50.一次函数y=-3x+b的图像经过点(-1,2).(1)求这个一次函数表达式;(2)若点A(2m,y1),B(m-1,y2)在该一次函数的图像上,且y1<y2,求实数m的取值范围.参考答案:1.A【分析】由不等式(1)1a x a 的解集是1x <,不等式的方向发生了改变,从而可得:1a +<0,于是可得答案.【详解】解:不等式(1)1a x a 的解集是1x <,1a ∴+<0,a ∴<1-,故选:A .【点睛】本题考查的是不等式的基本性质,不等式的解集,掌握“不等式的两边都除以同一个负数,不等号的方向要改变.”是解题的关键 2.C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -中(1)1>0a +;(3)89<;(4)31x x -≤;(6)>1x y -是不等式,共4个,故选C .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠. 3.D【分析】理解:和的一半,应先和,再一半;负数,即小于0. 【详解】根据题意得:12(x +3)<0.故选D .【点睛】本题考查了列不等式.解题的关键是找准关键字,把文字语言转换为数学语言. 4.D【分析】先求出方程的解,根据解是正数列出不等式,即可解答 【详解】在方程两边同乘x ﹣1得:3x+a=x ﹣1, 解得:x=-1-a2①方程的解是正数,①102112aa --⎧>⎪⎪⎨--⎪≠⎪⎩解得a <﹣1且a≠﹣3. 故选D .【点睛】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式 5.D【分析】根据不等式的解集在数轴上的表示方法即可得出. 【详解】解:由数轴可知,4x <且1x ≥-,①这个不等式组可能是41x x <⎧⎨≥-⎩故答案为:D .【点睛】本题考查了不等式组的解集在数轴上的表示方法,解题的关键是熟知数轴表示不等式组解集的方法. 6.C【分析】根据二次根式的非负性质列出不等式来求解. 【详解】解:①①40x -≥, ①4x ≤. 故选:C .【点睛】本题主要考查了二次根式有意义的条件,理解二次根式的非负性质是解答关键. 7.D【详解】A. ①a >b , ①a+m >b+m ,故正确; B. ①a >b ,① a (m 2+1)>b (m 2+1),故正确; C. ①a >b ,①-22ab <-,故正确;D. ①a=1,b=-2时,满足a >b ,但 a 2<b 2,故不正确; 故选D .8.B【分析】根据不等式组无解,判断m 与7的大小关系.【详解】解:①不等式组7x x m <⎧⎨>⎩无解,①m ≥7, 故选:B .【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 9.B【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不妨设a =-1,b =-2,则a 2<b 2,本选项不一定成立,故本选项不符合题意; B .①a >b ,①-5a <-5b ,故本选项符合题意; C .不妨设a =-5,b =-10, 则510ab=,故本选项不符合题意; D .不妨设a =1,b =2,则a -2<b +2,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 10.D【详解】试题分析:根据不等式的基本性质依次分析各选项即可作出判断. A .11a b +>+,B .22a b>,C .,均正确,不符合题意;D .,故错误,本选项符合题意.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成. 11.C【详解】若m <n ,不等两边都乘以—2,不等号方向改变得, -2m >-2n,①答案是C.-2m >-2n.故答案为 C.点睛:本题考查不等式的性质,不等式两边同加或同减同一个数,不等号方向不变;不等式两边同乘同一个正数,不等号方向不变;不等式两边同乘同一个负数,不等号方向改变.12.B【分析】利用不等式解与解集的定义判断即可.【详解】解:A、x=-2是不等式-2x>1的一个解,说法正确,不符合题意;B、x=-2是不等式-2x>1的一个解,原说法错误,符合题意;C、x-7>2x+8的解集为x<-15与x<15的解集不相同,说法正确,不符合题意;D、x<-3与-7x>21的解集相同,说法正确,不符合题意,故选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.13.C【分析】购买5件需要15元,30元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【详解】设可以购买x(x为整数)件这样的商品.3×5+(x-5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选C.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.14.B【分析】解分式方程,检验根得出a的范围;根据分式方程的解为正数,列出不等式求得a的范围;解不等式组,根据解集为y<-2,的出a的范围;根据a为整数,得出a的值,最后求和即可.【详解】解:分式方程的两边都乘以(x-1)得:2-a=3(x-1),解得53ax-=,①x-1≠0,①51 3a-≠,①a ≠2,①方程的解为正数, ①503a ->, ①a<5且a ≠2;21?324()0?y y y a +⎧->⎪⎨⎪-≤⎩①②, 解不等式①得:y<-2,解不等式①得:y ≤a ,①不等式组的解集为y<-2,①a ≥-2.①-2≤a<5且a ≠2①整数a 的和为(-2)+(-1)+0+1+3+4=5;故选:B .【点睛】本题考查了分式方程的解,一元一次不等式组的解集,考核学生的计算能力,注意分式方程一定要检验.15.D【分析】分两种情况进行分析讨论:a >0与a <0,根据抛物线的顶点位置和开口方向,结合题意,列出不等式求解即可.【详解】解:当a >0时,1-a <1,①抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段AB 恰有一个公共点,则()()22162614132314a a⎧--⨯-+≥⎪⎪⎨⎪⨯-⨯+<⎪⎩, 解得,a >1;当a <0时,1-a >1,若1<1-a <4,即-3<a <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段AB 无交点;若1-a =4,即a =-3时,抛物线的顶点在线段AB 上,此时抛物线与线段AB 只有一个公共点;若1-a >4,即a <-3时,抛物线的对称轴在直线x =-3的左边,顶点在直线y =4的上方, 若抛物线与线段AB 恰有一个公共点,则()()2216261132314a a⎧--⨯-+>⎪⎪⎨⎪⨯-⨯+≤⎪⎩, 解得,a <一4,综上,a <-4或a =-3或a >1.故嘉嘉、淇淇的结果合在一起也不正确,故选:D .【点睛】题目主要考查二次函数的基本性质及解不等式组,理解题意,根据题意列出不等式组是解题关键.16.A【详解】①|2a +5|+|2a -3|=8,①250230a a +>⎧⎨-<⎩ , ①5322a -<<, ①整数a 的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.17.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++∴11 aa b+=+,①10a+<,①a<1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.18.D【分析】分别利用不等式的基本性质判断得出即可.【详解】A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得-2a<-2b,原变形错误,故这个选项不符合题意;C、由a>b,得11a b>或11a b<,原变形错误,故这个选项不符合题意;D、由a>b,得-1+a>-1+b,原变形正确,故这个选项符合题意;故选:D.【点睛】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.19.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:30 312 xx+≥⎧⎨-≤⎩①②解不等式①,得:x≥﹣3,解不等式②,得:x≤1,则不等式组的解集为:﹣3≤x≤1.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.D【分析】根据x y≤,列出不等式,即可求出p的取值范围.【详解】方程组21 431 x y px y p+=+⎧⎨+=-⎩①②①×2得:4x+2y=2p+2①,①-①得:-y=p+3,解得:y=-p-3,把y=-p-3代入①得:x=p+2,①方程组得解为:23x p y p =+⎧⎨=--⎩; ①方程组的解满足条件x y ≤,①p+2≤-p-3解得:p≤52- 故选:D .【点睛】本题考查了解一元一次不等式,以及解二元一次方程组,弄清题意是解题的关键.21.318y +>.【分析】关系式为:y 的3倍18+>,把相关数值代入即可.【详解】解:根据题意,可列不等式:318y +>,故答案为:318y +>.【点睛】考查列一元一次不等式,根据关键词得到相应的关系式是解决本题的关键.22.18x +y ≤5 【分析】x 的18即x 乘18,与y 的和不超过5,就是小于或等于5,据此解答即可. 【详解】解:语句“x 的18与y 的和不超过5”可以表示为18x +y ≤5. 故答案为:18x +y ≤5. 【点睛】本题主要考查了不等式的意义,关键是明白不超过5,就是小于或等于5. 23.4m >-##-4<m【分析】直接把两个方程相加,求出,根据1x y +>得出关于m 的不等式,解之即可.【详解】解:22522x y m x y m +=+⎧⎨+=-+⎩, 直接把两个方程相加,得337x y m +=+,①73m x y ++=, ①1x y +>, ①713m +>, ①4m >-.故答案为:4m >-.【点睛】本题考查了解二元一次方程组、一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.2m ≤【分析】先利用加减消元法解二元一次方程组,求得用m 表示的x 、y ,根据方程组的解满足不等式x +2y ≥3可得关于m 的不等式,解不等式即可.【详解】解:3522323x y m x y m +=+⎧⎨+=-⎩①②, ①×2-①×3,得:134y m =-,将134y m =-代入①,得:721x m =-,①方程组的解为721134x m y m =-⎧⎨=-⎩, ①方程组的解满足不等式x +2y ≥3,①()72121343m m -+-≥,解得:2m ≤,故答案为:2m ≤.【点睛】本题主要考查了解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组的基本方法和解不等式的基本步骤是解题的关键.25.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.26.3<x≤4【分析】先分别解出各不等式的解集,再找到其公共解集即可求解. 【详解】解()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩①② 解不等式①得x >3;解不等式①得x≤4故不等式组的解集为3<x≤4故答案为:3<x≤4.【点睛】此题主要考查不等式组的求解,解题的关键是熟知不等式的求解方法. 27.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:①正比例函数()2y m x =+中,y 随x 的增大而增大,①2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.28.x ≤2【分析】本题考查不等式的解集在数轴上表示,左边表示小于,实心圆点表示等于.【详解】解:由图得,x ≤2.故答案为x ≤2.29.10【详解】试题解析:解不等式1−2x >3(x −7),得:225x <, 则不等式组的解集为2215x ≤<, ①不等式组的整数解的和为1+2+3+4=10,故答案为1030.1 【分析】根据题意列一元一次不等式4123a -<,解此不等式的解集为74a <,再找到其中最大的整数解即可.【详解】解:由题意得,4123a -<, 416a ∴-<,47a <,74a ∴<, ∴a 的最大整数值是1,故答案为:1.【点睛】本题考查解一元一次不等式、不等式的整数解等知识,准确解出一元一次不等式的解集是解答本题的关键.31.57x ≤【分析】先求出两个不等式的解集,再求其公共解.【详解】2352x x ①②-≥⎧⎨->-⎩, 由①得,x≥5,由①得,x<7,所以,不等式组的解集是:5≤x <7.故答案为5≤x <7.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 32.12x <≤【分析】分别求出两个不等式的解集,即可求解.【详解】解①1012x x x ->⎧⎪⎨+≥⎪⎩①②, 解不等式①得① 1x >解不等式①得①2x ≤,①不等式组的解集为12x <≤ 故答案为① 12x <≤【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.33.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠ ①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.34.n <11【分析】将方程的解代入方程中,得到关于k 、m 、n 的方程组,可求k =n -4,根据k <7即可求n 的取值范围.【详解】解:由题意可得:()312111n km k n k m k +=++⎧⎨-=+++⎩解得:k =n -4①k <7①n -4<7①n <11故答案为:n <11【点睛】本题考查了二元一次方程的解,求出k =n -4是本题的关键.35.4 【分析】先解不等式组,得到该不等式组的解集为445x -<≤,即可得到其整数解的个数.【详解】解:253(3)121035x x x +<+⎧⎪⎨-+≥⎪⎩①②, 解不等式①可得:4x >-;解不等式①可得:45x ≤, 所以该不等式组的解集为:445x -<≤, 所以该不等式组的整数解为3-,2-,1-,0,共4个,故答案为:4.【点睛】本题考查不等式组的整数解,正确解一元一次不等式组是解题的关键. 36.1.52x ≤<【分析】根据题意得出﹣3•[2x ﹣1]=﹣6,即[2x ﹣1]=2,据此可得2≤2x ﹣1<3,解之即可.【详解】解:根据题意,得:﹣3•[2x ﹣1]=﹣6,①[2x ﹣1]=2,则2≤2x ﹣1<3,解得1.52x ≤<.故答案为:1.52x ≤<.【点睛】本题主要考查解一元一次不等式组,解题的关键是根据新定义列出关于x 的不等式组.37.-5<x≤-4【分析】先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法即可求得解集. 【详解】解不等式1x 22-≥得:x≤-4, 解不等式11-x >1-3x 得:x>-5,所以不等式组的解集是:-5<x≤-4,故答案为-5<x≤-4.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组解集的确定方法是关键. 不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 38.不是【分析】先根据二元一次方程的定义求出k 值,从而得k +1的值,再把k +1代入不等式检验,即可求解.【详解】解:①||4(5)21k k x y ---=是关于x ,y 的二元一次方程, ①5041k k -≠⎧⎨-=⎩,解得:k =-5, ①k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,①-2>-9,①k +1不是不等式221x x +<-的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.39.-3≤a <-2.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式3-2x >2,得:x <12 ,解不等式x-a >0,得:x >a ,则不等式组的解集为a <x <12,①不等式组恰有3个整数解,①不等式组的整数解为-2、-1、0,则-3≤a <-2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.40.28.25【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,①《长津湖》与《铁道英雄》的日销售量和为450本,①a +b =450,即b =450-a ,①《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ①22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,①《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,①5060m n <+≤ ,①《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,①()()332205ma nb mb na +-+= ,①b =450-a ,①()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,①()()13503135032205n a m a ma na ---+-= ,①()()413502205m n a --= ,①180230a ≤<,①413500a -<,①0m n -< ,即m n < ,①当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,①此时3na 的值最小,则m 最大,①180230a ≤<,①a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,①5060m n <+≤,①50 3.560m m <++≤,即23.2528.25m <≤ ,①m 最大,①28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.41.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①② 由①得,3x >,由①得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.42.(1)最多可以购买甲种树苗40棵;(2)该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵【分析】(1)设购买甲种树苗x 棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,由总费用不超过500元,列出不等式,即可求解.【详解】解:(1)设购买甲种树苗x 棵,由题意可得:()30202303400x x ++≤,解得:40x ≤,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,依题意得:()302024500m m +≤﹣, 解得:2m ≤.又①m 为正整数,①m 可以取1,2,①该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.【点睛】本题考查的是一元一次不等式的应用,正确理解题目意思是解决本题的关键. 43.(1)①乘法分配律;①五,不等式两边都除以-5,不等号的方向没有改变(2)x <2【分析】(1)①由题意可得依据乘法分配律(运算律)进行变形的;①由题意根据不等式的基本性质3进行分析即可;(2)由题意根据不等式的基本性质3进行分析计算即可.(1)解:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;①第五步开始出现错误,这一步错误的原因是不等式两边都除以-5,不等号的方向没有改变;故答案为:乘法分配律;五,不等式两边都除以-5,不等号的方向没有改变;(2)213232x x -->-1. 解:2(2x -1)>3(3x -2)-64x -2>9x -6-64x -9x >-6-6+2-5x >-10x <2该不等式的正确解集是x <2.【点睛】本题考查解一元一次不等式,注意掌握其一般步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.44.3<x ≤4【分析】先解每个不等式,再将不等式解集表示在数轴上,再取公共解集即可.【详解】解:21{5238x x x x +-<≥-①②,由①得:x >3,由②得:x ≤4,将解集在数轴上表示出来如下:∴原不等式组的解集为:3<x ≤4.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的一般步骤和正确的取不等式组的解集.45.34x <≤【分析】分别求不等式的解,再找公共部分,就是不等式组的解.【详解】解:由①式得:3x >.由①式得:4x ≤.①不等式组的解集为: 34x <≤.【点睛】本题主要考查解一元一次不等式组,掌握“同小取小”, “同大取大”, “大小小大取中间”,“小小大大无解”是关键.46.(1)x >−4,数轴见详解;(2)x ≤1,数轴见详解【分析】(1)根据解一元一次不等式的方法,可以求得该不等式的解集,然后在数轴上表示出其解集即可;(2)先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示即可.【详解】解:(1)5x +3>4x −1,移项,得5x −4x >−1−3,合并同类项,得x >−4,其解集在数轴上表示如下,。
解不等式练习题及答案初二不等式是数学中一个重要的概念,它描述了数之间的大小关系。
解不等式是解决数学问题中常见的一种方法。
在初二数学学习中,我们会遇到各种不等式的题目。
本篇文章将为大家提供一些初二阶段常见的解不等式练习题及答案。
希望通过这些建议和习题,能够帮助大家更好地理解和掌握不等式的解题方法。
一、一元一次不等式1.解不等式:3x + 5 < 17解:首先将不等式中的常数项移到一边,得到:3x + 5 - 5 < 17 - 5化简后得:3x < 12然后将不等式两边除以系数3,得到:x < 42.解不等式:2x + 3 > 7解:首先将不等式中的常数项移到一边,得到:2x + 3 - 3 > 7 - 3化简后得:2x > 4然后将不等式两边除以系数2,得到:x > 23.解不等式:4x - 1 ≤ 7解:首先将不等式中的常数项移到一边,得到:4x - 1 + 1 ≤ 7 + 1化简后得:4x ≤ 8然后将不等式两边除以系数4,得到:x ≤ 2二、一元二次不等式4.解不等式:x^2 - 5x > 0解:首先将不等式移到一边,得到:x^2 - 5x > 0然后将不等式因式分解,得到:x(x - 5) > 0得到不等式的解集:x < 0 或 x > 55.解不等式:2x^2 + 7x + 3 ≤ 0解:首先将不等式移到一边,得到:2x^2 + 7x + 3 ≤ 0然后求解二次方程2x^2 + 7x + 3 = 0 的解,得:x = -3 或 x = -1/2得到不等式的解集:-3 ≤ x ≤ -1/2三、综合不等式6.解不等式:3x + 2 > 8 或 2x - 5 ≤ 7解:对于不等式3x + 2 > 8,同样进行通项计算,得到:3x > 6,x > 2对于不等式2x - 5 ≤ 7,同样进行通项计算,得到:2x ≤ 12,x ≤ 6得到综合不等式的解集:x ≤ 6 并且 x > 2,即2 < x ≤ 67.解不等式:(x - 1)(x + 2) > 0 或 x - 3 < 0解:对于不等式(x - 1)(x + 2) > 0,我们可以通过图像法或符号法进行解答。
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
不等式的概念及解集同步练习题5套(含答案)同步练习题(1)知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.用 连接的式子叫做不等式;2.当x = 3时,下列不等式成立的是 ( )A 、x +3>5B 、x +3>6C 、x +3>7D 、x +3>8 3.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <05.下列说法中,正确的是 ( )A 、x=3是不等式2x>5的一个解B 、x=3是不等式2x>5的解集C 、x=3是不等式2x>5的唯一解D 、x=2是不等式2x>5的解6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3)7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB0-1-2知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1、在下列式子中:①x-1>3x;②x+1>y;③1/3x - 1/2y;④4<7;⑤x ≠2;⑥x=0;⑦2x-1≥y;⑧x ≠y 是不等式的是 。
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。
初一不等式试题及答案一、选择题1. 如果a > b,且c < 0,那么下列不等式中正确的是:A. ac > bcB. ac < bcC. a + c > b + cD. a - c < b - c答案:A2. 对于任意实数x,下列不等式一定成立的是:A. x + 1 > xB. x - 1 < xC. x × 1 = xD. x ÷ 1 = x答案:C二、填空题1. 如果x > 5,那么-3x _______ -15。
答案:<2. 已知2x - 3 < 7,解得x _______ 5。
答案:<三、解答题1. 已知不等式3x + 5 > 14,求x的取值范围。
解:首先将不等式两边同时减去5,得到3x > 9。
然后将不等式两边同时除以3,得到x > 3。
所以x的取值范围是x > 3。
2. 如果一个数的一半加上3等于这个数减去4,求这个数。
解:设这个数为x,根据题意可得:\( \frac{x}{2} + 3 = x - 4 \)将等式两边同时乘以2,得到:\( x + 6 = 2x - 8 \)将等式两边同时减去x,得到:\( 6 = x - 8 \)将等式两边同时加上8,得到:\( x = 14 \)所以这个数是14。
四、应用题1. 某工厂计划在一个月内生产至少100件产品,已知每天可以生产10件产品,问至少需要多少天完成生产计划?解:设需要x天完成生产计划。
根据题意,每天生产10件产品,至少需要生产100件产品,可以得到不等式:\( 10x \geq 100 \)将不等式两边同时除以10,得到:\( x \geq 10 \)所以至少需要10天完成生产计划。
结束语:通过本试题的练习,同学们应该对不等式的概念、性质以及解法有了更深入的理解。
希望同学们能够通过不断的练习,提高解决实际问题的能力。
初中不等式试题及答案一、选择题1. 若不等式2x - 5 > 0成立,则x的取值范围是()。
A. x > 2.5B. x < 2.5C. x > -2.5D. x < -2.5答案:A2. 已知x + 3 > 0,那么以下哪个不等式一定成立?()A. x > -3B. x < -3C. x ≥ -3D. x ≤ -3答案:A二、填空题1. 解不等式3x - 7 < 0,得到x的解集是 x < \frac{7}{3} 。
2. 若不等式组\left\{\begin{matrix}x+2>0\\ 3x-4\leq5\end{matrix}\right. 的解集为x > -2,x ≤ 3,那么x的取值范围是 -2 < x ≤ 3。
三、解答题1. 解不等式2x + 3 > 5,并写出解集。
解:首先将不等式2x + 3 > 5化简,得到2x > 2,然后除以2得到x > 1。
因此,解集为x > 1。
2. 已知不等式组\left\{\begin{matrix}2x-1>3\\x+4<7\end{matrix}\right.,求x的取值范围。
解:首先解第一个不等式2x - 1 > 3,得到x > 2。
然后解第二个不等式x + 4 < 7,得到x < 3。
因此,x的取值范围是2 < x < 3。
四、应用题1. 某商店为了促销,规定购买商品金额超过100元即可享受8折优惠。
小华购买了一些商品,实际支付了80元,请问他购买的商品原价是多少?解:设小华购买的商品原价为x元,则根据题意有0.8x = 80。
解得x = 100。
所以,小华购买的商品原价是100元。
初中数学解不等式与不等式组练习题及答案解不等式与不等式组练习题及答案不等式是数学中常见的一种数学形式,用于表示两个数之间的大小关系。
初中数学中,解不等式与不等式组是一个重要的知识点,本文将为大家提供一些与不等式相关的练习题及答案。
希望这些习题能够帮助大家更好地理解与掌握不等式的解法。
练习题一:解下列不等式,并将解表示在数轴上:1. 2x - 3 > 52. 4x + 7 ≤ 153. 3(2x - 1) < 2(3x + 4) + 5解答:1. 2x - 3 > 5首先将不等式中的常数项移动到一边,得到 2x > 8。
接下来将方程两边除以2,得到 x > 4。
由于是大于号,所以不包括等于4,因此解集为 x ∈ (4, +∞)。
2. 4x + 7 ≤ 15首先将不等式中的常数项移动到一边,得到4x ≤ 8。
接下来将方程两边除以4,得到x ≤ 2。
由于是小于等于号,所以解集为 x ∈ (-∞, 2]。
3. 3(2x - 1) < 2(3x + 4) + 5首先将不等式中的括号展开,得到 6x - 3 < 6x + 13 + 5。
然后进行合并整理,得到 6x - 3 < 6x + 18。
可以发现等式两边的6x相互抵消了,留下 -3 < 18。
由于是小于号,所以解集为 x ∈ (-∞, +∞)。
练习题二:解下列不等式组,并将解表示在数轴上:1.{ x - 3 > 4{ 2x + 5 > 82.{ 3x - 4 ≤ 2{ 2x + 1 > 53.{ 4x - 2 < 10{ 3x + 7 ≥ 2解答:1.{ x - 3 > 4{ 2x + 5 > 8首先解第一个不等式 x - 3 > 4,得到 x > 7。
然后解第二个不等式 2x + 5 > 8,得到 x > 1.5。
综合两个不等式的解集,得到 x ∈ (7, +∞)。
中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。
第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集要点感知1 用表示大小关系的式子,叫做不等式,用表示不等关系的式子也是不等式.预习练习1-1 下列式子中是不等式的有.①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7.11-2 “b 的与c 的和是负数”用不等式表示为.2要点感知2 使不等式的未知数的叫做不等式的解.预习练习2-1 以下所给的数值中,是不等式-2x+3<0 的解的是( )3A.-2B.-1C.D.222-2 不等式3x<9 的解的个数有( )A.1个B.3 个C.5 个D.无数多个要点感知3 一个含有未知数的不等式的,组成这个不等式的解集.求不等式的解集的过程叫做.预习练习3-1 (20**·宿迁)如图,数轴所表示的不等式的解集是.知识点1 不等式1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2 中,是不等式的有( )A.2个B.3 个C.4 个D.5 个2.“数x 不小于2”是指( )A.x≤2B.x≥2C.x<2D.x>23.用不等式表示:(1)x 的2 倍与5 的差不大于1;1 1(2)x 的与x 的的和是非负数;3 2(3)a 与3 的和不小于5;(4)a 的20%与a 的和大于a 的3 倍.知识点2 不等式的解集4.下列说法中,错误的是( )A.x=1 是不等式x<2 的解B.-2 是不等式2x-1<0 的一个解C.不等式-3x>9 的解集是x=-3D.不等式x<10 的整数解有无数个5.用不等式表示如图所示的解集,其中正确的是( )A.x>-2B.x<-2C.x≥-2D.x≤-26.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6 和x,则( )A.9<x<10B.10<x<11C.11<x<12D.12<x<132 27.在下列各数:-2,-2.5,0,1,6 中,不等式x>1 的解有;不等式- x>1 的3 3解有.18.由于小于6 的每一个数都是不等式x-1<6 的解,所以这个不等式的解集是x<6.这种说法2对不对?9.x与3 的和的一半是负数,用不等式表示为( )1 1 1A. x+3>0B. x+3<0C. (x+3)<02 2 21D. (x+3)>0210.下面给出5 个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( )A.2 个B.3 个C.4 个D.5 个11.下列说法正确的是( )A.2 是不等式x-3<5 的解集B.x>1 是不等式x+1>0 的解集C.x>3 是不等式x+3≥6 的解集D.x<5 是不等式2x<10 的解集12.下列不等式中,4,5,6 都是它的解的不等式是( )A.2x+1>10B.2x+1≥9C.x+5≤10D.3-x>-213.(20**·长春改编)不等式x<-2 的解集在数轴上表示为( )中考必练试题14.(20**·西宁)某饮料瓶上有这样的字样:Eatable Date 18 months.如果用 x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为 . 15. 比较下面两个算式结果的大小(在横线上填“>”“<”或“=”):32+42(-2)2+522×3×4,22+222×(-2)×5,( 1 )2+( 2)22×2×2,12+( 3)241 2 2× × .32×1× ,42 323通过观察归纳,写出能反映这种规律的式子 . 16. 下列数值中哪些是不等式 3x-1≥5 的解?哪些不是?100,98,51,12,2,0,-1,-3,-5.17. 不等式的解集 x<3 与 x ≤3 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.18. 直接写出下列各不等式的解集:(1)x+1>0; (2)3x <6; (3)x-1≥5.挑战自我19. 阅读下列材料,并完成填空.你能比较 2 0132 014 和 2 0142 013 的大小吗?为了解决这个问题,先把问题一般化,比较 n n+1 和(n+1)n (n ≥1,且 n 为整数)的大小.然后从分析 n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1) 通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12⑥67 65; 21;②23 76;⑦78 32;③3487;43;④45 54;⑤56(2) 归纳第(1)问的结果,可以猜想出 n n+1 和(n+1)n 的大小关系; (3)根据以上结论,可以得出 2 0132 014 和 2 0142 013 的大小关系.参考答案课前预习要点感知 1 “<”或“>” “≠” 预习练习 1-1 ①②⑤ 1 1-2b+c<02要点感知 2 成立 值预习练习 2-1 D 2-2 D要点感知 3 所有的解 解不等式预习练习 3-1 x ≤3 当堂训练 1.C 2.B中考必练试题3.(1)2x-5≤1.1 1(2) x+ x≥0.3 2(3)a+3≥5.(4)20%a+a>3a.4.C5.C6.C7.6-2,-2.58.这种说法是错的.课后作业9.C 10.B 11.D 12.B 13.D 14.x≤1815.> = > > > a2+b2≥2ab16.100,98,51,12,2 是不等式3x-1≥5 的解;0,-1,-3,-5 不是不等式3x-1≥5 的解.17.x<3 的解集是小于3 的所有数,在数轴上表示出来是空心圆圈,不包括3 这个数;而x≤3 的解集是小于或等于3 的所有数,在数轴上表示出来是实心圆点,包括3 这个数.把它们表示在数轴上为:18.(1)x>-1;(2)x<2;(3)x≥6.19.(1)< < > > > > >(2)当n=1 或2 时,n n+1<(n+1)n;当n≥3 时,n n+1>(n+1)n.(3)2 0132 014>2 0142 013.。
中考数学专题练习-不等式的解及解集(含分析)一、单项选择题1.某日我市最高气温是26℃,最低气温是 12℃,则当日气温 t(℃)的变化范围是()A. t>26B. t ≥ 12C. 12<t<26 D. 12≤ t ≤ 262.以下说法正确的选项是 ()A. x=1 是不等式- 2x<1 的解集B. x=3 不是不等式- x<1 的解集C. x>- 2 是不等式- 2x<1 的解集D. 不等式- x<1的解集是 x<- 13.不等式组的解集是x>a,则a的取值范围是()A. a<﹣ 2B. a=﹣2C. a>﹣2 D. a≥﹣24.从以下不等式中选择一个与x+1 ≥2构成不等式组,假如要使该不等式组的解集为 x≥1,那么能够选择的不等式能够是()A. x>﹣ 1B. x>2C. x<﹣1 D. x<25.若对于 x 的一元一次不等式组无解,则a的取值范围是()第 1页 /共 17页A. a≥1B. a>1C. a≤﹣1 D. a<﹣ 16.以下式子中,是不等式的有()℃ 2x=7;℃ 3x+4y;℃﹣3<2;℃ 2a﹣3≥0;℃x>1;℃a﹣b>1.A.5个 B.4个 C.3个 D.1个7.若不等式组有解,则a的取值范围是()A. a≤3B. a<3C. a<2 D. a≤28.某种品牌奶粉合上注明“蛋白质≥ 20%”,它所表达的意思是()A. 蛋白质的含量是 20%B. 蛋白质的含量不能是 20%C. 蛋白质的含量高于20%D. 蛋白质的含量不低于 20%9.对于不等式 x﹣3<0,以下说法中不正确的选项是()A.x=2 是它的一个解B.x=2 不是它的解C.有无数个解D.x<3 是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3B. a>﹣ 3C. a≤﹣3 D. a<﹣ 311.某市最高气温是 33℃,最低气温是 24℃,则该市气温t(℃)的变化范围是()A. t>33B. t ≤ 24C. 24<t<33 D. 24≤ t ≤ 3312.已知不等式组的解集是x>2,则a的取值范围是()A. a≤2B. a<2 C. a=2 D. a>213.若 a<0,则不等式组的解集是()A.x >﹣B.x>﹣C.x>D.x>二、填空题14.若不等式的解集为x>3,则a的取值范围是________.15.写出一个解为 x≤1的不等式 ________16.已知不等式 2x+ ℃>2 的解集是 x>﹣ 4,则“℃”表示的数是________17.某药品说明书上注明药品保留的温度是(10±4)℃,设该药品适合的保留温度为 t,则温度 t 的范围是 ________18.若不等式组的解集是﹣3<x<2,则a+b=________19.已知不等式组有解,则实数m的取值范围是________20.若对于 x 的不等式组的解集是x>m,则m的取值范围是________三、解答题21.在数轴上有 A,B 两点,此中点 A 所对应的数是 a,点 B 所对应的数是 1.已知 A,B 两点的距离小于 3,请你利用数轴.(1)写出 a 所知足的不等式;(2)数﹣ 3,0,4 所对应的点到点 B 的距离小于 3 吗?22.在数轴上画出以下解集:x≥1且 x≠2.23.已知方程组的解知足不等式4x﹣5y< 9.求 a 的取值范围.四、综合题24.已知对于 x 的不等式( 2a﹣b)x+a﹣5b>0 的解集为 x<,(1)求的值(2)求对于 x 的不等式 ax>b 的解集.25.对于 x 的两个不等式℃<1与℃1﹣3x>0(1)若两个不等式的解集同样,求 a 的值;(2)若不等式℃的解都是℃的解,求 a 的取值范围.答案分析部分一、单项选择题1.某日我市最高气温是26℃,最低气温是 12℃,则当日气温 t(℃)的变化范围是()A. t>26B. t ≥ 12C. 12<t<26 D. 12≤ t ≤ 26【答案】 D【考点】不等式的解集【分析】【解答】解:当日气温t(℃)的变化范围是12≤t ≤,26应选 D.【剖析】最高气温与最低气温之间的气温即为当日气温t(℃)的变化范围.2.以下说法正确的选项是 ()A. x=1 是不等式- 2x<1 的解集B. x=3 不是不等式- x<1 的解集C. x>- 2 是不等式- 2x<1 的解集D. 不等式- x<1的解集是 x<- 1【答案】 A【考点】不等式的解集【分析】【剖析】依据不等式的解集的定义及不等式的基天性质挨次剖析各项即可。
第九章不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
要点感知1 用__________表示大小关系的式子,叫做不等式,用__________表示不等关系的式子也是不等式.
预习练习1-1 下列式子中是不等式的有__________.
①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7.
1-2 “b的1
2
与c的和是负数”用不等式表示为__________.
要点感知2使不等式__________的未知数的__________叫做不等式的解. 预习练习2-1以下所给的数值中,是不等式-2x+3<0的解的是( )
A.-2
B.-1
C.3
2
D.2
2-2 不等式3x<9的解的个数有( )
A.1个
B.3个
C.5个
D.无数多个
要点感知3一个含有未知数的不等式的__________,组成这个不等式的解集.求不等式的解集的过程叫做__________.
预习练习3-1(20**·宿迁)如图,数轴所表示的不等式的解集是__________.
知识点1 不等式
1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )
A.2个
B.3个
C.4个
D.5个
2.“数x不小于2”是指( )
A.x≤2
B.x≥2
C.x<2
D.x>2
3.用不等式表示:
(1)x的2倍与5的差不大于1;
(2)x的1
3
与x的
1
2
的和是非负数;
(3)a与3的和不小于5;
(4)a的20%与a的和大于a的3倍. 知识点2 不等式的解集
4.下列说法中,错误的是( )
A.x=1是不等式x<2的解
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x=-3
D.不等式x<10的整数解有无数个
5.用不等式表示如图所示的解集,其中正确的是( )
A.x>-2
B.x<-2
C.x≥-2
D.x ≤-2
6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )
A.9<x<10
B.10<x<11
C.11<x<12
D.12<x<13
7.在下列各数:-2,-2.5,0,1,6中,不等式2
3
x>1的解有__________;不等式-
2
3
x>1的
解有__________.
8.由于小于6的每一个数都是不等式1
2
x-1<6的解,所以这个不等式的解集是x<6.这种说法
对不对?
9.x与3的和的一半是负数,用不等式表示为( )
A.1
2
x+3>0 B.
1
2
x+3<0 C.
1
2
(x+3)<0
D.1
2
(x+3)>0
10.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( )
A.2个
B.3个
C.4个
D.5个
11.下列说法正确的是( )
A.2是不等式x-3<5的解集
B.x>1是不等式x+1>0的解集
C.x>3是不等式x+3≥6的解集
D.x<5是不等式2x<10的解集
12.下列不等式中,4,5,6都是它的解的不等式是( )
A.2x+1>10
B.2x+1≥9
C.x+5≤10
D.3-x>-2
13.(20**·长春改编)不等式x<-2的解集在数轴上表示为( )
14.(20**·西宁)某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为__________.
15.比较下面两个算式结果的大小(在横线上填“>”“<”或“=”):
32+42__________2×3×4,22+22__________2×2×2,12+(3
4
)2__________2×1×
3
4
,
(-2)2+52__________2×(-2)×5,(1
2
)2+(
2
3
)2__________2×
1
2
×
2
3
.
通过观察归纳,写出能反映这种规律的式子____________________.
16.下列数值中哪些是不等式3x-1≥5的解?哪些不是?
100,98,51,12,2,0,-1,-3,-5.
17.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
18.直接写出下列各不等式的解集:
(1)x+1>0;(2)3x<6;(3)x-1≥5.
挑战自我
19.阅读下列材料,并完成填空.
你能比较2 0132 014和2 0142 013的大小吗?
为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.
(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)
①12__________21;②23__________32;③34__________43;④45__________54;⑤56__________65;
⑥67__________76;⑦78__________87;
(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;
(3)根据以上结论,可以得出2 0132 014和2 0142 013的大小关系.
参考答案
课前预习
要点感知1 “<”或“>”“≠”
预习练习1-1①②⑤
1-21
2
b+c<0
要点感知2 成立值
预习练习2-1 D
2-2 D
要点感知3 所有的解解不等式预习练习3-1x≤3
当堂训练
1.C
2.B
3.(1)2x-5≤1.
(2)1
3
x+
1
2
x≥0.
(3)a+3≥5.
(4)20%a+a>3a.
4.C
5.C
6.C
7.6-2,-2.5
8.这种说法是错的.
课后作业
9.C 10.B 11.D 12.B 13.D 14.x≤18
15.> = > > > a2+b2≥2ab
16.100,98,51,12,2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解.
17.x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈,不包括3这个数;而x≤3的解集是小于或等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数.把它们表示在数轴上为:
18.(1)x>-1;
(2)x<2;
(3)x≥6.
19.(1)< < > > > > >
(2)当n=1或2时,n n+1<(n+1)n;
当n≥3时,n n+1>(n+1)n.
(3)2 0132 014>2 0142 013.。