一元二次方程应用传播问题
- 格式:ppt
- 大小:1.04 MB
- 文档页数:10
一元二次方程的应用( 3) ----- 流传问题
一、流传问题
例 1、有一种传染性病毒,一个人传染后,经过两轮传染共有 121 人被传染,每轮传染中平均一个人传染了几个人?
练习:
1、某种电脑病毒流传特别快,若是一台电脑被传染,经过两轮传染后就会
有 81 台电脑被传染.请你用学过的知识分析,每轮传染中平均一台电脑会传染
几台电脑?若病毒得不到有效控制, 3 轮传染后,被传染的电脑会不会高出 700 台?
2、某种树木的骨干长出若干支杆,每个支杆又长出同样数目的小分支,骨干、
支杆和小分支的总数为91,每个支杆长出多少小分支?
二、单循环、签合同、握手、对角线、数线段,互送礼品问题
例 2: 从盛满 20 升纯酒精的容器里倒出若干升,尔后用水注满,再倒出同样
升数的混淆液后,这时容器里剩下纯酒精 5 升.问每次倒出溶液的升数?
例 3、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,依照场所和时间等条件,赛程计划安排 7 天,每天安排 4 场,比赛组织者应邀请多少个队参赛?
练一练:
1、参加一次足球联赛的每两个球队之间都进行两次比赛,共赛了90场,共有多少队参加比赛?
2、要组织一擦很可以篮球赛,赛制为单循环形式(每两队之间赛一场),计划安排 15 场比赛。
应邀请多少球队参加比赛?
3、参加一次商品交易会的每两家企业之间都签订了一份合同,所有企业共签订
了 45 份合同,共有多少家企业参加交易会?
4、毕业时每个同学都将自己的相片送给班上的其他同学作纪念,全班共送了2256 张相片,问全班有多少名同学?
5、一个小组有若干个人,新年互送贺卡一张,已知全组共送贺卡 72 张,则这个小组有多少人?。
【精品】一元二次方程应用(传染问题)受新冠疫情的影响,今年全国多个地方的中考时间延迟了。
新型冠状病毒之所以可怕,其较强的传染性是一个主要原因。
这与我们中考中的“病毒传播”问题的知识点正好契合,所以这个类型的题目应该是各地中考题目中的热点题目。
“病毒传播”问题是初中一元二次方程中的典型题目。
我们看一下例题:
某种病毒传播非常快、如果一台电脑中毒、经两轮感染后就会有81台电脑被感染.
问:(1)每轮感染中平均一台电脑会感染几台电脑?
解答这类问题,要注意“本体”是否还具有“传染性”的问题,此例题中“本体”是具有传染性的,所以可以利用计算“增长率(降低率)”的公式进行解答。
传播问题公式:
其中a表示传染之初携带病毒的个体数量,x表示每轮感染中每个个体可以传染的数量,n表示传播了几轮,b表示经过n轮传播后,已经感染病毒的个体的总数量。
所以这个例题的解答可以为:
从这个问题中,我们也不能看到病毒传播是多么可怕,如果不加以控制隔离,传染速度是多么快。
温馨提示:这个例题中,“本体”具有传播能力,要注意与题目“某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出小分支的个数是多少?”区分开。
传播问题与一元二次方程公式(一)一元二次方程公式介绍一元二次方程是数学中常见的方程形式,通常可表示为:ax^2 + bx + c = 0。
在传播问题中,一元二次方程公式可以用于计算传播过程中的变量之间的关系。
一元二次方程公式一元二次方程公式可以用于求解传播问题中的变量值。
以下是一元二次方程的公式:1.一元二次方程的一般解求根公式: x = (-b ±√(b^2 - 4ac)) / 2a2.一元二次方程的顶点坐标公式: x = -b / (2a) y =-Δ / (4a),其中Δ = b^2 - 4ac解释和例子下面通过举例来解释一元二次方程公式的应用:例子1:计算传播过程中的变量关系假设某种传播活动的传播速度为v,传播时间为t,传播距离为d,其中传播速度和传播时间满足一元二次方程关系。
已知传播速度为2m/s,传播时间为5s,求传播距离。
根据一元二次方程公式,我们可以得到: t = d / v d = vt代入已知值,可以计算得到: d = 2m/s * 5s = 10m因此,传播距离为10m。
例子2:求解一元二次方程的根解方程:x^2 + 4x + 4 = 0根据一元二次方程公式,我们可以得到: x = (-b ± √(b^2 -4ac)) / 2a代入已知值,可以计算得到: a = 1, b = 4, c = 4 x = (-4 ± √(4^2 - 414)) / (2*1) x = (-4 ± √(16 - 16)) / 2 x = (-4 ± √0) / 2 x = -2因此,该一元二次方程的解为x = -2。
总结一元二次方程公式是解决传播问题中变量关系的重要方法之一。
通过使用一元二次方程公式,我们可以计算出传播过程中各个变量之间的关系,并求解方程的根。
在实际应用中,我们可以根据具体的传播问题,灵活运用一元二次方程公式进行计算。
一元二次方程的传播问题一、传播问题的基本模型1. 基本情况- 在传播问题中,常常涉及到一个初始量,以及按照一定的传播规则进行数量的增长。
例如,某种传染病最初有a个人患病,每一轮每个患者能传染给x个人。
- 那么经过一轮传播后,患病的总人数为a + ax=a(1 + x);经过两轮传播后,患病的总人数为a(1 + x)+a(1 + x)x=a(1 + x)^2;以此类推,经过n轮传播后,患病的总人数为a(1 + x)^n。
二、典型题目及解析(一)题目11. 题目内容- 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染。
每轮感染中平均一台电脑会感染几台电脑?设每轮感染中平均一台电脑会感染x台电脑。
2. 解析- 最初有1台电脑被感染,第一轮感染后,感染的电脑数为1× x + 1=(1 + x)台;第二轮感染是在(1 + x)台电脑的基础上进行的,所以第二轮感染后感染的电脑数为(1 + x)x+(1 + x)=(1 + x)^2台。
- 已知经过两轮感染后有81台电脑被感染,则可列出方程(1 + x)^2 = 81。
- 对(1 + x)^2 = 81求解:- 开方可得1+x=±9。
- 当1 + x = 9时,x = 8;当1 + x=-9时,x=-10(因为感染的台数不能是负数,所以舍去)。
- 所以每轮感染中平均一台电脑会感染8台电脑。
(二)题目21. 题目内容- 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2. 解析- 设每轮传染中平均一个人传染了x个人。
- 最初有1个人患病,第一轮传染后患病的人数为1× x+1=(1 + x)人;第二轮传染是在(1 + x)人的基础上进行的,所以第二轮传染后患病的人数为(1 + x)x+(1 +x)=(1 + x)^2人。
- 已知经过两轮传染后共有121人患了流感,则可列出方程(1 + x)^2=121。
一元二次方程传染病公式
一元二次方程是形如ax^2+bx+c=0的方程,其中a、b、c是已知常数。
在传染病模型中,假设某个传染病的传播情况可以用一元二次方程来描述,其中x代表时间(通常是天数),y代表感染人数或者病毒数量。
常见的一元二次方程传染病公式可以表示为:
y = a*x^2 + b*x + c
其中a、b、c是根据具体传染病模型和数据拟合得到的参数。
需要注意的是,在实际应用中,一元二次方程不一定适用于所有传染病模型,因为每种传染病的传播方式和规律可能不同。
因此,在研究和预测传染病传播的时候,需要根据具体情况来选择适合的数学模型。
一元二次方程传染问题公式
嘿呀,一元二次方程传染问题公式啊,其实就是一个很有意思的工具呢!比如说,如果有一个传染病,最初只有一个人感染了,然后每天会以固定的比例传染给其他人,那我们就可以用一元二次方程来模拟这个传播过程啦!
公式大概就是这样的哦:y = a(1 + r)^x,在这个公式里呀,y 就表示
最终感染的人数,a 就是最初感染的人数,r 是每天传染的比例,x 呢就是
经过的天数。
举个例子吧,假如最初有5 个人感染了,每天传染的比例是,经过 10 天,那感染的人数不就是 y = 5(1 + )^10 吗!哎呀,你想想,这
多神奇呀,就这么一个小小的公式,就能把传染病的传播情况给大致算出来呢!这就好像是我们拿着一个神奇的望远镜,能看到传染病是怎么一点点蔓延开来的呢!
在现实生活中,这个公式可是很有帮助的呢!它能让我们更好地了解传染病的传播规律,从而采取更有效的措施来防控呀!可不是嘛,这多重要呀!所以呀,一元二次方程传染问题公式可真是个了不起的工具呢!。