湖南大学机械振动习题课
- 格式:ppt
- 大小:11.19 MB
- 文档页数:105
机械振动_机械波课后习题(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(B)k A 72 (3) 谐振动过程中,动能和势能相等的位置的位移等于(A) _A4 (D)5.2填空题(1) 一质点在X 轴上作简谐振动,振幅 A= 4cm,周期T= 2s,其平衡位置取作坐标原点。
若t = 0时质点第一次通过x = — 2cm 处且向X 轴负方向运动,则质点第二次通过 x = — 2cm 处的时刻为 ____ s 。
(2) 一水平弹簧简谐振子的振动曲线如题 5.2(2)图所示。
振子在位移为零,速度为一:A 、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。
振子处在位移的绝对值为 A 、速度为零、加速度为-?2A 和弹性力为一KA 的状态,则对应曲线上的点。
题5.2(2) 图⑶一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周 5.1选择题 (1) 一物体作简谐振动, 时刻的动能与t 二T/8 (A)1 : 4 (B) 1: 习题5 ?机械振动振动方程为-Acos( t -),则该物体在"0 (T 为振动周期)时刻的动能之比为:2 (C) 1: 1 (D) 2 : 1 (A)kA 2 (C) kA 7/4(D)0(B)期为T,振幅为A(a)若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为X= ____________________ 0(b)若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为X= __________________ 05.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10°kg的小球与轻弹簧组成的系统,按x =0.1cos(8t三)(SI)的3规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相⑶t2 =5s与t1 =1s两个时刻的位相差;5.8—个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T ,其振动方程用余弦函数表示.如果t=0时质点的状态分别是:(1)xo = -A ;(2)过平衡位置向正向运动;(3)过处向负向运动;2(4)过x二- A处向正向运动.J2试求出相应的初位相,并写出振动方程.5.9一质量为10 10"kg的物体作谐振动,振幅为24cm,周期为4.0s,当t = 0时位移为24cm .求:(1)t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到x =12cm处所需的最短时间;⑶在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉幵1.0cm后,给予向上的初速度V0 =5.0cm/s,求振动周期和振动表达式.5.11题5.11图为两个谐振动的x-t曲线,试分别写出其谐振动方程.题5.11图5.12一轻弹簧的倔强系数为k,其下端悬有一质量为M的盘子.现有一质量为m 的物体从离盘底h高度处自由下落到盘中并和盘子粘在一起,于是盘子幵始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?⑶ 取平衡位置为原点,位移以向下为正,并以弹簧幵始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.5.13 有一单摆,摆长I =1.0m ,摆球质量m=10 10 Jkg ,当摆球处在平衡位置时,若给小球一水平向右的冲量 F :t 二1.0 10-kg m/ s ,取打击时刻为计时起点(t =0),求振动的初位相和角振幅,并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20m ,位相与第一振动的位相差为一,已知第一振动的振幅为0.173m ,求第二个振动的振幅以及第6一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
第一章 概论1-1概念1. 机械振动系统由哪几部分组成?其典型元件有哪些?2. 机械振动研究哪三类基本问题?3. 对机械振动进行分析的一般步骤是什么?4. 在振动分析中,什么叫力学模型,什么叫数学模型?5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?6. 什么叫离散元件或集中参数元件?7. 什么叫连续体或分布参数元件?8. 建立机械振动系统力学模型的基本原则有哪些?9.建立机械振动系统力学模型需要考虑的基本问题?并分析建立下图中的系统的力学模型。
一台机器(看为一个整体)平置于一块板上,板通过两个垂直的支撑块放置在地面上,试建立其力学模型。
10. 如果一个振动系统是线性的,它必须满足什么条件?11. 如果一个振动系统的运动微分方程是常系数的,它必须满足什么条件? 12. 试讨论:若从车内乘客的舒适度考虑,该如何建立小轿车的振动模型?1-2简谐运动及其运算1求下列简谐函数的单边复振幅和双边复振幅 (1))3sin(2πω+=t x (2))410cos(4ππ+=t x (3))452cos(3︒+=t x π答案:(1)111,,2222S B B X j X j X j +-==-=+ (2),,S B B X X X +-== (3),,224444S B B X j X j X j +-=+=+=-2通过简谐函数的复数表示,求下列简谐函数之和,并用“振动计算实用工具”对(2)(3)进行校核(1))3sin(21πω+=t x )32s i n (32πω+=t x (2)t x π10sin 51=)410cos(42ππ+=t x(3))302sin(41︒+=t x π )602sin(52︒+=t x π)452cos(33︒+=t x π)382cos(74︒+=t x π )722cos(25︒+=t x π答案:(1))6.6cos(359.412︒+=t x ω (2))52.4710cos(566.312︒-=t x π (3))22.92cos(776.1412345︒+=t x π3试计算题1中)(t x 的一阶导数和二阶导数对应的复振幅,并给出它们的时间历程4设)(t x 、)(t f 为同频简谐函数,并且满足)(t f cx x b x a =++ 。
习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。
若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。
振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。
振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。
题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。
(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。
(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。
5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;(b) 周期振动和周期;(c) 简谐振动。
振幅、频率和相位角。
1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i )2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
已知周期的变化∆τ=0.1 s。
求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。
2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。
2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动微分方程。
图2-1 图2-2 图2-32-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩ ,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩所以:[][]12212220,0t t t t t k k k I M K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭………… (a)或者采用能量法:系统的动能和势能分别为θθ=+2211221122T E I I θθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--即:224222121()240t t I k I k ωωω=-+=解得:21,222ω==所以:1ω=2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:11212u u =-;12222u u =令21u ,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。