江苏省无锡市格致中学八年级数学上学期10月月考试卷(含解析) 苏科版
- 格式:doc
- 大小:349.52 KB
- 文档页数:21
江苏省八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020九上·金昌期中) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分) (2017八上·江夏期中) 如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A . 40°B . 35°C . 30°D . 25°3. (2分)如图,△ABC中,AB=AC,∠BAD=25°,且AD=AE,则∠EDC=()A . 25°B . 10°C . 5°D . 12.5°4. (2分)如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A . 2种B . 3种C . 4种D . 5种5. (2分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2A E;其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019八上·和平期中) 如图,在△ 和△ 中,90°,.有以下结论:① ;② 平分;③ 平分.其中,正确结论的个数是()A . 0B . 1C . 2D . 37. (2分)如图,四边形ABCD是矩形,AB:AD = 4:3,把矩形沿直线AC折叠,点B落在点E处,连接DE,则DE:AC =()A . 1:3B . 3:8C . 8:27D . 7:258. (2分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A . 50°B . 60°C . 70°D . 80°二、填空题 (共8题;共8分)9. (1分) (2017七下·东营期末) 在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有个10. (1分) (2015八下·深圳期中) 如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).11. (1分) (2017八下·扬州期中) 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是.12. (1分) (2017七下·天水期末) 如图所示,点A、B在直线l的同侧,AB=4cm,点C是点B关于直线l 的对称点,AC交直线l于点D,AC=5cm,则△ABD的周长为cm.13. (1分) (2020八上·温州期末) 如图,在△ABC中,∠ACB的平分线交AB于点D,DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为。
八年级(上)月考数学试卷(10月份)一.选择题:(每题3分,共24分)1.4的平方根是()A.2 B.4 C.±2 D.±42.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.3.在﹣,,,0.3030030003,﹣,3.14,4.,中,无理数有()A.2个 B.3个 C.4个 D.54.下列说法正确的是()A.4的平方根是±2B.1的立方根是±1C.=±5D.一个数的算术平方根一定是正数5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④7.如图所示,在∠AOB的两边上截取AO=BO,CO=DO,连接AD、BC交于点P,则①△AOD≌△BOC;②△APC≌△BPD;③P在∠AOB的平分线上,其中结论正确的是()A.①B.②C.①②D.①②③8.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°二.填空题:(本大题共8小题,每题2分,共16分)9.(1)36的平方根是;(2)=.10.(1)='(2)的平方根是.11.如果+|y﹣10|=0,则x+y的平方根是.12.如图,已知∠1=∠2,请你添加一个条件,使得△ABD≌△ACD.(添一个即可)13.如图,△ABC≌△CDA,则AB与CD的位置关系是,若AD=3cm,AB=2cm,则四边形ABCD的周长=cm.14.如图,AB=DB,∠ABD=∠CBE,请添加一个适当的条件:(只需添加一个即可),使△ABC≌△DBE.理由是.15.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.三.解答题(共11大题,共80分)17.计算:(1)()2﹣+(2)(﹣2)3×+(﹣1)2013﹣.18.求下列各式中的x:(1)(2x﹣1)2=10(2)8(x+1)3=27.19.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.20.如图是8×8的格点,线段a、b的端点在格点上,请在图中画出第三条线段,使其端点在格点上且与线段a、b组成轴对称图形.(画出所有情况,并在图中把这些线段标记为线段c、d、e、f、g….)21.如图,E、F在线段BC上,AB=DC,AE=DF,BF=CE,以下结论是否正确?请说明理由.(1)∠B=∠C;(2)AF∥DE.22.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)23.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为;(3)以AC为边作与△ABC全等的三角形,则可作出个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.24.如图,在四边形ABCD中,AD∥BC,把四边形对折,使点A、C重合,折痕EF分别交AD于点E,交BC于点F.(1)求证:△AOE≌△COF.(2)说明:点E与F关于直线AC对称.25.如图,Rt△ABC中,∠C=90°,BC=2,一条直线MN=AB,M、N分别在AC和过点A且垂直于AC的射线AP上运动.问点M运动到什么位置,才能使△ABC 和△AMN全等?并证明你的结论.26.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40度.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有几个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.27.(1)如图①,OP是∠MON的平分线,点A为OM上一点,点B为OP上一点.请你利用该图形在ON上找一点C,使△COB≌△AOB.参考这个作全等三角形的方法,解答下列问题:(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(3)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(2)中所得结论是否仍然成立?请说明理由.2016-2017学年江苏省无锡市江阴市XX实验学校八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题:(每题3分,共24分)1.4的平方根是()A.2 B.4 C.±2 D.±4【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.3.在﹣,,,0.3030030003,﹣,3.14,4.,中,无理数有()A.2个 B.3个 C.4个 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:﹣,,是无理数,故选:B.4.下列说法正确的是()A.4的平方根是±2B.1的立方根是±1C.=±5D.一个数的算术平方根一定是正数【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根的定义,即可解答.【解答】解:A、4的平方根是±2,正确;B、1的立方根是1,错误;C、=5,错误;D、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;故选:A.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.6.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等、对应角相等对各个选项进行判断即可.【解答】解:∵Rt△ABC≌Rt△CED,∴AC=CD,①成立;∵Rt△ABC≌Rt△CED,∴∠1=∠D,又∠2+∠D=90°,∴∠2+∠1=90°,即∠ACD=90°,∴AC⊥DC,②成立;∵Rt△ABC≌Rt△CED,∴AB=EC,BC=ED,又BE=BC+EC,∴BE=AB+ED,③成立;∵∠B+∠E=180°,∴AB∥DE,④成立,故选:D.7.如图所示,在∠AOB的两边上截取AO=BO,CO=DO,连接AD、BC交于点P,则①△AOD≌△BOC;②△APC≌△BPD;③P在∠AOB的平分线上,其中结论正确的是()A.①B.②C.①②D.①②③【考点】全等三角形的判定与性质.【分析】由AO=BO,∠O=∠O,DO=CO,①△AOD≌△BOC,∠A=∠B;AO=BO,CO=DO⇒AC=BD,又∠A=∠B,∠APC=BPD⇒②△APC≌△BPD;连接OP,容易证明△AOP≌△BOP⇒∠AOP=∠BOP⇒③点P在∠AOB的平分线上.【解答】解:连接OP,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),故①正确;∴∠A=∠B;∵AO=BO,CO=DO,∴AC=BD,在△APC和△BPD中,,∴△APC≌△BPD(AAS),故②正确;∴AP=BP,在△AOP和△BOP中,,∴△AOP≌△BOP(SSS),∴∠AOP=∠BOP,即点P在∠AOB的平分线上,故③正确.故选D.8.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°【考点】全等三角形的判定与性质;三角形内角和定理.【分析】根据三角形内角和定理即可判断.【解答】解:A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.故选A.二.填空题:(本大题共8小题,每题2分,共16分)9.(1)36的平方根是±6;(2)=﹣2.【考点】立方根;平方根.【分析】原式利用平方根、立方根定义判断即可.【解答】解:(1)36的平方根是±6;(2)=﹣2,故答案为:(1)±6;(2)﹣210.(1)=13'(2)的平方根是±3.【考点】算术平方根;平方根.【分析】(1)先求出被开方数的值,再求算术平方根即可;(2)先求的值,再求平方根即可.【解答】解:(1)原式==13;(2)∵=9,∴的平方根是±3,故答案为13,±3.11.如果+|y﹣10|=0,则x+y的平方根是±2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】依据非负数的性质可知x+6=0、y﹣10=0,可求得x、y的值,在求得x+y 的值,最后求平方根即可.【解答】解:∵+|y﹣10|=0,∴x+6=0、y﹣10=0,∴x=﹣6,y=10.∴x+y=4.∴x+y的平方根是±2.故答案为:±2.12.如图,已知∠1=∠2,请你添加一个条件AB=AC,使得△ABD≌△ACD.(添一个即可)【考点】全等三角形的判定.【分析】要判定△ABD≌△ACD,已知AD=AD,∠1=∠2,具备了一组边对应相等,一组对应角相等,故添加AB=AC后可根据SAS判定△ABD≌△ACD.【解答】解:添加AB=AC,∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故答案为:AB=AC.13.如图,△ABC≌△CDA,则AB与CD的位置关系是平行,若AD=3cm,AB=2cm,则四边形ABCD的周长=10cm.【考点】全等三角形的性质.【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.【解答】解:∵△ABC≌△CDA,∴∠BAC=∠ACD,∴AB∥DC,则AB与CD的位置关系是平行,∵AD=3cm,AB=2cm,∴BC=3cm,DC=2cm,则四边形ABCD的周长=3+3+2=2=10(cm).故答案为:平行,10.14.如图,AB=DB,∠ABD=∠CBE,请添加一个适当的条件:BC=BE(只需添加一个即可),使△ABC≌△DBE.理由是SAS.【考点】全等三角形的判定.【分析】根据∠ABD=∠CBE,可得∠ABD+∠ABE=∠CBE+∠ABE,即可得出∠DBE=∠ABC,又已知AB=DB,故只需添加BE=BC,便可根据SAS判定△ABC≌△DBE.【解答】解:添加条件:BC=BE.∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠DBE=∠ABC,在△ABC和△DBE中,,∴△ABC≌△DBE(SAS).故答案为:BC=BE,SAS.15.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去玻璃店.【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.三.解答题(共11大题,共80分)17.计算:(1)()2﹣+(2)(﹣2)3×+(﹣1)2013﹣.【考点】实数的运算.【分析】(1)原式利用平方根及立方根的定义化简即可得到结果;(2)原式利用平方根及立方根的定义化简,计算即可得到结果.【解答】解:(1)原式=3﹣4﹣2=﹣3;(2)原式=﹣8×﹣1﹣3=﹣44﹣1﹣3=﹣48.18.求下列各式中的x:(1)(2x﹣1)2=10(2)8(x+1)3=27.【考点】立方根;平方根.【分析】(1)先依据平方根的定义得到关于x的方程,然后再解方程即可;(2)先依据立方根的定义得到关于x的方程,然后再解关于x的方程即可.【解答】解:(1)2x﹣1=±,解得:x=.(2)方程两边同时除以8得:(x+1)3=.∴x+1=∴x=.19.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.20.如图是8×8的格点,线段a、b的端点在格点上,请在图中画出第三条线段,使其端点在格点上且与线段a、b组成轴对称图形.(画出所有情况,并在图中把这些线段标记为线段c、d、e、f、g….)【考点】利用轴对称设计图案.【分析】根据轴对称的性质画出图形即可.【解答】解:如图;21.如图,E、F在线段BC上,AB=DC,AE=DF,BF=CE,以下结论是否正确?请说明理由.(1)∠B=∠C;(2)AF∥DE.【考点】全等三角形的判定与性质.【分析】(1)证得△ABE≌△DCF即可;(2)证得△AFE≌△DEF,求得∠AFE=∠DEF,即可证得平行.【解答】解:(1)(2)都成立.(1)∵BF=CE,∴BF+FE=CE+FE.即:BE=CF.又∵AB=DC,AE=DF,∴△ABE≌△DCF.∴∠B=∠C.(2)∵△ABE≌△DCF,∴AE=DF,∠AEF=∠DFE.又∵FE=FE,∴△AFE≌△DEF.∴∠AFE=∠DEF.∴AF∥DE.22.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)【考点】图形的剪拼;利用轴对称设计图案.【分析】根据轴对称图形的法则去画即可,有多种图形.【解答】解:(1)所作图形如下所示:23.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为3;(3)以AC为边作与△ABC全等的三角形,则可作出3个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.【考点】作图-轴对称变换;全等三角形的判定;轴对称-最短路线问题.【分析】(1)分别作各点关于直线l的对称点,再顺次连接即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据勾股定理找出图形即可;(4)连接B′C交直线l于点P,则P点即为所求.【解答】解:(1)如图,△AB′C′即为所求;=2×4﹣×2×1﹣×1×4﹣×2×2=8﹣1﹣2﹣2=3.(2)S△ABC故答案为:3;(3)如图,△AB1C,△AB2C,△AB3C即为所求.故答案为:3;(4)如图,P点即为所求.24.如图,在四边形ABCD中,AD∥BC,把四边形对折,使点A、C重合,折痕EF分别交AD于点E,交BC于点F.(1)求证:△AOE≌△COF.(2)说明:点E与F关于直线AC对称.【考点】翻折变换(折叠问题);全等三角形的判定与性质;轴对称的性质.【分析】(1)根据平行线的性质得到∠DAC=∠BCA,根据翻转变换的性质得到OA=OC,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质得到OE=OF,根据轴对称的性质证明.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠BCA,∵把四边形沿EF对折,点A、C重合,∴OA=OC,AC⊥EF,在△AOE和△COF中,∴△AOE≌△COF;(2)证明:∵△AOE≌△COF,∴OE=OF,又AC⊥EF,∴点E与F关于直线AC对称.25.如图,Rt△ABC中,∠C=90°,BC=2,一条直线MN=AB,M、N分别在AC和过点A且垂直于AC的射线AP上运动.问点M运动到什么位置,才能使△ABC 和△AMN全等?并证明你的结论.【考点】全等三角形的判定.【分析】由条件可知∠C=∠MAN=90°,且AB=MN,故要使△ABC和△AMN全等则有AM与CA对应或AM和BC对应,从而可确定出M的位置.【解答】解:当点C和点M重合或AM=2时两个三角形全等,证明如下:∵PA⊥AB,∴∠BCA=∠MAN=90°,当点C、点M重合时,则有AM=AC,在Rt△ABC和Rt△MNA中,∴Rt△ABC≌Rt△MNA(HL),当AM=BC=2时,在Rt△ABC和Rt△MNA中,∴Rt△ABC≌Rt△MNA(HL),综上可知当点C和点M重合或AM=2时两个三角形全等.26.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40度.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有几个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.【考点】作图—复杂作图.【分析】(1)作一个角等于已知角40°,然后在角的两边上分别以顶点截取1cm 和2cm的线段,连接即可得到符合条件的三角形;(2)能,可在40°角的一边上以顶点截取1cm的线段,然后以1cm线段的另一个端点为圆心,2cm长为半径作弧,与40°角的另一边交于一点,所得三角形也符合条件;(3)a=3,b=4,∠C=40°,a=3,∠B=40°b=4,a=3,b=4,∠A=40°有2解,先画一条直线,确定一点A作40°,取4cm,得到C,以C为圆心,3为半径,交直线上有2点,B和B1,符合条件三角形有2个△ABC和△AB1C.(有4个)【解答】解:如图所示:(1)如图1;作40°的角,在角的两边上截取OA=2cm,OB=1cm;(2)如图2;连接AB,即可得到符合题意的△ABC.(3)如图3,满足这一条件,且彼此不全等的三角形共有4个:a=3,b=4,∠C=40°,a=3,∠B=40°b=4,a=3,b=4,∠A=40°有2解,先画一条直线,确定一点A作40°,取4cm,得到C,以C为圆心,3为半径,交直线上有2点,B和B1,符合条件三角形有2个△ABC和△AB1C.27.(1)如图①,OP是∠MON的平分线,点A为OM上一点,点B为OP上一点.请你利用该图形在ON上找一点C,使△COB≌△AOB.参考这个作全等三角形的方法,解答下列问题:(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(3)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(2)中所得结论是否仍然成立?请说明理由.【考点】三角形综合题;角平分线的定义;三角形内角和定理;全等三角形的判定与性质.【分析】(1)在∠MON的两边上以O为端点截取相等的两条相等的线段,两个端点与角平分线上任意一点相连,所构成的两个三角形全等,即△COB≌△AOB;(2)根据图(1)的作法,在CG上截取CG=CD,证得△CFG≌△CFD(SAS),得出DF=GF;再根据ASA证明△AFG≌△AFE,得EF=FG,故得出EF=FD;(3)根据图(1)的作法,在CG上截取AG=AE,证得△EAF≌△GAF(SAS),得出FE=FG;再根据ASA证明△FDC≌△FGC,得DF=FG,故得出EF=FD.【解答】解:(1)如图①所示,△COB≌△AOB,点C即为所求.(2)如图②,在CG上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,,∴△CFG≌△CFD(SAS),∴DF=GF.∵∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=∠BAC,∠FCA=∠ACB,且∠EAF=∠GAF,∴∠FAC+∠FCA=(∠BAC+∠ACB)==60°,∴∠AFC=120°,∴∠CFD=60°=∠CFG,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)DF=EF 仍然成立.证明:如图③,在CG上截取AG=AE,同(2)可得△EAF≌△GAF(SAS),∴FE=FG,∠EFA=∠GFA.又由题可知,∠FAC=∠BAC,∠FCA=∠ACB,∴∠FAC+∠FCA=(∠BAC+∠ACB)==60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得△FDC≌△FGC(ASA),∴FD=FG,∴FE=FD.2017年2月15日。
初二数学阶段性练习参考答案一、选择题(每小题3分,共30分)1.D 2.A 3.C 4.C 5.A 6.C 7.D 8.B9.B 10.D 二、填空题(每小题3分,共24分)11.2012.5013.AD=BF (答案不唯一)14.2115.4,1016.3217.61318.13120三、解答题(共76分)19.(8分)证明:∵BE=DF∴BE+EF=DF+EF 即BF=DE (2分)∵AF ∥CE∴∠AFB=∠CED(4分)在△AFB 和△CED 中⎪⎩⎪⎨⎧=∠=∠=DE BF CED AFB CE AF (6分)∴△AFB ≌△CED (SAS )(8分)20.(每题4分,共8分)(1)12<2m-2<28(2分)1<m<15(4分)(2)由题意得,当AB =AC =20时,∴等腰△ABC 的周长=20+20+8=48当BC =AC =8时.不符合要求,舍去综上:等腰△ABC 的周长=20+20+8=48(8分)21.(每题4分,共8分)22.证明:∵在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=AE AD A A AC AB ∴△ABD ≌△ACE (SAS )(2分)∴∠ABD=∠ACE (3分)∵AB=AC∴∠ABC=∠ACB(4分)∴∠ABD ﹣∠ABC =∠ACE ﹣∠ACB即∠OBC=∠OCB (6分)∴OB=OC图1图2C∴点O 在线段BC 的垂直平分线上.(8分)23.(1)图略(6分)(2)∵∠CBE=∠ADC∴AD ∥BE∴∠DAC=∠BEA ,∠BAD=∠EBA (1分)∵AD 平分∠BAC ∴∠BAD=∠DAC (2分)∴∠EBA=∠BEA ∴AB=AE (3分)又∵AF ⊥BE ∴BF=EF(4分)24.(1)∵BD 平垂直平分AE∴AD=DE,AB=BE ,(2分)∴△DEC 的周长=DE+DC+EC=AD+DC+EC=AC+EC=7(3分)∴△ABC 的周长=AB+AC+CE+BE=19(4分)∴AB=2719 =6(5分)(2)∵∠ABC=35°,∠C =50°,∴∠BAC=180°﹣35°﹣50°=95°(6分)∵AD=DE ,AB=BE∴∠DAE=∠DEA ,∠BAE=∠BEA (7分)∴∠DAE+∠BAE=∠DEA+∠BEA 即∠BAC=∠DEB=95°(8分)∴∠CDE=∠BA C﹣∠C=45°(9分)25.(1)BC=9(10分)(2)AB+AC=CD证明:在AF 上截取AM=AC ,则可证△ADM ≌△ADC (SAS )(4分)∴CD=MD ,∠ACD=∠AMD又∵∠ACB+∠ACD =180°,∠AMD+∠DMF=180°∴∠ACB=∠FMD 又∵∠ACB=2∠B ∴∠FMD=2∠B又∵∠FMD=∠B+∠MDB ∴∠B=∠MDB ∴BM=MD∴AB+AM=MD又∵AM=AC ,MD=CD ∴AB+AC=CD(3)①在AB 上截取AE=AD ,连结CE ,或过C 点作CG ⊥BE ,作CH ⊥AD ,垂直分别为G ,H 证明略(10分)②AB=18(12分)26.(1)AE=FC 且AE ⊥FC (1分)证明略(证明△ABE ≌△CBF (SAS ))(4分)(2)①AE+FC=21AC (5分)证明略(连结DN 、BN,证明△DEN ≌△DFC (SAS ))(9分)②MN=25(12分)第6题图ABDC第2题图第4题图第5题图初二数学阶段性练习(2023.10)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应......的选项标号涂黑......)1.下列四个图形中,是轴对称图形的是………………………………………………(▲)A.B .C .D .2.如图,将△ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 一定是△ABC 的………………………………………………………………………(▲)A .中线B .高线C .角平分线D .无法确定3.若等腰三角形有一个内角为110°,则这个等腰三角形的底角是………………(▲)A .70°B .45°C .35°D .50°4.如图,点F ,B ,E ,C 在同一条直线上,△ABC ≌△DEF ,若∠A =34°,∠F =36°,则∠DEC 的度数为……………………………………………………………………(▲)A .50°B .60°C .70°D .80°5.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是……………………(▲)A .SSSB .SASC .ASAD .AAS6.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若CD =3,AB =8,则△ABD 的面积是(▲)A .36B .24C .12D .107.到三角形三个顶点的距离都相等的点是三角形的…………………………………(▲)A .三条角平分线的交点B .三条边的中线的交点C .三条高的交点D .三条边的垂直平分线的交点8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有……………(▲)A .1个B .2个C .3个D .4个9.已知:如图△ABC 中,∠B =60°,∠C =80°,在直线BA 上找一点D ,使△ACD 或△BCD 为等腰三角形,则符合条件的点D 的个数有…………………………………(▲)A .7个B .6个C .5个D .4个10.如图,直线MN ⊥PQ ,垂足为O ,点A 是射线OP 上一点,OA=2,以OA 为边在OP 右侧作∠AOF=23°,且满足OF=4,若点B 是射线ON 上的一个动点(不与点O 重合),连结AB ,作△AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,∠OFC 的度数为……………………………………………………………(▲)A .90°B .67°C .23°D .68°二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt △ABC 中,CD 是斜边AB 上的中线,若CD =10,则AB =▲.12.已知图中的两个三角形全等,则∠α的度数是▲°.13.如图,点A 、D 、B 、F 在一条直线上,已知AC =FE ,BC =DE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是▲.14.如图,在Rt △ABC 中,∠BAC =90°,过顶点A 的直线DE ∥BC ,∠ABC ,∠ACB 的平分线分别交DE 于点E 、D ,若AC =9,AB =12,则DE 的长为▲.15.如图,已知线段AB =20m ,射线MA ⊥AB 于点A ,射线BD ⊥AB 于B ,P 点从B 点向A运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发▲秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等.第10题图O BACM NP QF第9题图58°72°α第12题图第13题图第14题图第15题图16.如图,在△ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D ,E 是边BC 上一点,把△ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC =DE .若∠F =42°,则∠A 的度数为▲度.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分∠BAD,且∠AED =90°,若CD =2AB ,四边形ABCD 的周长为18,BC =5,则AB 的值为▲.18.如图,在△ABC 中,AB =AC =13,BC =10,∠BAC 的平分线交BC 于点D ,AD =12点M 、N 分别是边AD 和AB 上的动点,连接BM 、MN ,则BM +MN 的最小值为▲.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)已知:如图,点E 、F 在线段BD 上,BE =DF ,AF=CE ,AF ∥CE .求证:△ABF ≌△CDE .20.(本题满分8分)已知在△ABC 中,AB =20,BC =8,AC =2m −2.(1)求m 的取值范围;(2)若△ABC 是等腰三角形,求△ABC 的周长.ABCEDF第17题图第18题图第16题图21.(本题满分8分)利用网格线作图.(1)如图1,△ABC 为格点三角形,在BC 上找一点P ,使点P 到AB 和AC 的距离相等,然后在射线AP 上找一点Q ,使QB =QC .(2)如图2,四边形ABCD 为格点四边形,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .22.(本题满分8分)已知:如图,在△ABC 中,AB =AC ,D 、E 分别在AC ,AB 且AD=AE ,求证:点O 在线段BC 的垂直平分线上.23.(本题满分10分)如图,已知△ABC .(1)用直尺和圆规按下列要求作图:①作△ABC 的角平分线AD ;②在CA 的延长线上找一点E ,使∠CBE =∠ADC ;③作AF ⊥BE ,垂足为F .(2)判断图中EF 与BF 的数量关系并证明.24.(本题满分10分)如图,在△ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若△ABC 的周长为19,△DEC 的周长为7,求AB 的长.(2)若∠ABC=35°,∠C=50°,求∠CDE 的度数.ABCD E OABC图1A图2BCD25.(本题满分12分)在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是△ABC 的高线,∠C =2∠B ,若CD =2,AC=5,求BC 的长.小明同学的解法是:将△ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC=▲.【探究】(2)如图2,∠ACB =2∠B ,AD 为△ABC 的外角∠CAF 的平分线,交BC 的延长线于点D ,则线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分∠BAD ,AD =8,DC =BC =10,①求证:∠B +∠D =180°;②若∠D=2∠B ,则AB 的长为▲.图2图1图326.(本题满分12分)已知等腰直角△ABC中,∠ABC=90º,AB=BC,点D、E分别在边BC、边AC上,连接DE,以D为直角顶点在DE右侧作等腰直角△DEF中,连接FC.(1)如图1,点D与点B重合时,猜想AE和FC的关系,并说明理由;图1(2)如图2,BD=CD时,点M、N分别为EF和AC的中点,①探究AE、FC和AC三条线段之间的数量关系并证明;②若BC=10,直接写出MN 的最小值.图2。
八年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共30.0分)1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.2.下列实数:2、2、227、0.1010010001、327、π,其中无理数的个数为()A. 1B. 2C. 3D. 43.把数60500精确到千位的近似数是()A. 60B. 610000C. 6.0×104D. 6.1×1044.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm5.如图,在△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A. AB=2BDB. ∠B=∠CC. AD平分∠BACD. AD⊥BC6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. BD=CDB. AB=ACC. ∠B=∠CD. ∠BAD=∠CAD7.在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过E作DE⊥AB交AC于D,如果AC=5cm,则AD+DE等于()A. 3 cmB. 4 cmC. 5 cmD. 6 cm8.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A. 三边中线的交点B. 三条角平分线的交点C. 三边中垂线的交点D. 三边上高的交点9.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm10.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A. 2a+∠A=180∘B. a+∠A=90∘C. 2a+∠A=90∘D. a+∠A=180∘二、填空题(本大题共8小题,共16.0分)11.5的平方根是______.12.实数a、b在数轴上如图所示,化简|a|-|a-b|=______.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为______.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为______cm.15.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠ADE=______°.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=14cm,BC=16cm,则DE=______cm.17.已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFB=______°.18.如图,在△ABC中,∠ACB=90°,∠BAC=60°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有______ 个.三、解答题(本大题共8小题,共54.0分)19.(1)计算:38+|-2|-22;(2)计算:4-|-1|+(3−1)0;(3)求出下列x的值:4x2-9=0.20.如图,OA、OB表示两条相交的公路,点M、N是两个工厂,现在要在∠AOB内建立一个货物中转站P,使中转站到公路OA、OB的距离相等,并且到工厂M、N的距离也相等,用尺规作出货物中转站P的位置.21.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为______;(3)以AC为边作与△ABC全等的三角形,则可作出______个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.22.已知5x-1的算术平方根是3,4x+2y+1的立方根是1,求4x-2y的平方根.23.如图,在△ABC中,AB=AC,AC的垂直平分线分别交BC、AC于点D、E.(1)若AC=12,BC=15,求△ABD的周长;(2)若∠B=20°,求∠BAD的度数.24.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.25.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.26.如图①,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,AB=10cm.现有一动点P,从A点出发,沿着三角形的边AC-CB-BA运动,回到A点停止,速度为1cm/s,设运动时间为ts.(1)当t=______时,△ABC的周长被线段AP平分为相等的两部分.(2)当t=______时,△APC的面积等于△ABC面积的一半.(3)还有一个△DEF,∠E=90°,如图②所示,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与P同时从A点出发,沿着边AB-BC-CA运动,回动速度______cm/s.答案和解析1.【答案】D【解析】解:四个汉字中只有“善”字可以看作轴对称图形,故选:D.根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.2.【答案】B【解析】解:无理数有,π共2个.故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【答案】D【解析】解:60500≈6.1×104(精确到千位).故选:D.先利用科学记数法表示,然后把百位上的数字1进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.4.【答案】C【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.本题考查了三角形三边关系与周长的求解.5.【答案】A【解析】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故B正确)AD⊥BC,(故D正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故A不正确).故选:A.此题需对每一个选项进行验证从而求解.此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.【答案】B【解析】解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故选:B.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【答案】C【解析】解:∵DE⊥AB,∴∠DEB=90°=∠C,在Rt△BED和Rt△BCD中,∴Rt△BED≌Rt△BCD(HL),∴DE=DC,∴AD+DE=AD+CD=AC=5cm,故选:C.根据HL证Rt△BED≌Rt△BCD,推出DE=DC,得出AD+DE=AD+DC=AC,代入求出即可.本题考查了直角三角形全等的性质和判定,注意:全等三角形的对应边相等,判断直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.8.【答案】C【解析】解:∵三角形的三条垂直平分线的交点到三角形各顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.题查线线质应识实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.9.【答案】B【解析】解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.根据角平分线上的点到角的两边的距离相等可得DE=CD.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并准确识图是解题的关键.10.【答案】A【解析】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°-∠B-∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选:A.根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.本题考查了全等三角形的判定和性质以及三角形的内角和定理,是基础知识解:∵(±)2=5,∴5的平方根是±.故答案为:±.直接根据平方根的定义解答即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【答案】-b【解析】解:观察函数图象,可知:a<0<b,∴a-b<0,∴|a|-|a-b|=-a+a-b=-b.故答案为:-b.观察数轴,可得出a<0,a-b<0,再结合绝对值的定义即可求出结论.本题考查了实数与数轴以及绝对值,观察数轴找出a<0,a-b<0是解题的关键.13.【答案】105°【解析】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°-∠A-∠C=180°-40°-35°=105°.故答案为:105°根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.此题考查关于某直线对称的两图形全等,全等三角形的对应角相等以及三角形的内角和定理.解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.【答案】40【解析】解:∵在△ABC中,∠ACB=90°,∠A=25°,∴∠B=180°-90°-25°=65°,根据折叠可得∠CED=65°,∴∠EDA=65°-25°=40°,故答案为:40.根据三角形内角和定理可得∠B=65°,再由折叠可得∠CED的度数,再根据三角形外角的性质可得∠EDA的度数.此题主要考查了三角形内角和定理,以及三角形外角的性质,关键是掌握三角形内角和是180°.16.【答案】2【解析】解:设DE=xcn,过D作DF⊥BC于F,∵DE⊥AB,BD平分∠ABC,∴DF=DE=xcm,∵△ABC的面积是30cm2,∴S△ABC=S△ABD+S△CBD=30cm2,∵AB=14cm,BC=16cm,∴×14×x+×16×x=30,解得:x=2,即DE=2cm,故答案为:2.过D作DF⊥BC于F,根据角平分线性质得出DE=DF,根据三角形面积公式求出即可.本题考查了角平分线性质和三角形面积,能根据角平分线性质得出E=DF是解此题的关键.17.【答案】120【解析】解:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABE和△BCD中,,∴△ABE≌△BCD(SAS),∴∠BAE=∠CBD,∴∠BAE+∠ABF=∠CBD+∠ABF=∠ABC=60°,在△ABF中,∠AFB=180°-(∠BAE+∠ABF)=180°-60°=120°.故答案为:120.根据等边三角形的性质可得AB=BC,∠ABC=∠C=60°,然后利用“边角边”证明△ABE和△BCD全等,根据全等三角形对应角相等可得∠BAE=∠CBD,从而求出∠BAE+∠ABF=∠ABC=60°,再根据三角形的内角和等于180°列式计算即可得解.本题考查了全等三角形的判定与性质,等边三角形的性质,熟记性质并确定出全等三角形以及三角形全等的条件是解题的关键.18.【答案】6【解析】解:①AB的垂直平分线交直线AC于点P1,交BC于点P2,(此时PA=PB);②以A为圆心,AB为半径画圆,交AC于二点P3,P1,交BC于点P4,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P6,交AC有一点P1(此时BP=BA).故符合条件的点有6个.故答案为:6.根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.本题考查了等腰三角形的判定;利用分类讨论与数形结合是解题的关键.19.【答案】解:(1)原式=2+2-4=0;(2)原式=2-1+1=2;(3)4x2-9=0,则x2=94,解得:x=±32.【解析】(1)直接利用立方根以及绝对值的性质分别化简得出答案;(2)直接利用绝对值以及算术平方根和零指数幂的性质分别化简得出答案;(3)直接利用平方根的定义化简得出答案.此题主要考查了实数运算以及平方根,正确化简各数是解题关键.20.【答案】解:如图所示:.【解析】根据线段垂直平分线上的点到线段两端点的距离相等,角平分线上的点到角的两边距离相等,连接MN,作MN的垂直平分线,∠AOB的平分线,相交于点P,则点P即为建中转站的位置.本题考查了应用与设计作图,主要利用了线段垂直平分线上的点到线段两端点的距离相等,角平分线上的点到角的两边距离相等的性质,熟练掌握线段垂直平分线的作法,角平分线的作法是解题的关键.21.【答案】3 3【解析】解:(1)如图,△AB′C′即为所求;(2)S△ABC=2×4-×2×1-×1×4-×2×2=8-1-2-2=3.故答案为:3;(3)如图,△AB1C,△AB2C,△AB3C即为所求.故答案为:3;(4)如图,P点即为所求.(1)分别作各点关于直线l的对称点,再顺次连接即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据勾股定理找出图形即可;(4)连接B′C交直线l于点P,则P点即为所求.本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.22.【答案】解:∵5x-1的算术平方根为3,∴5x-1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=-4,4x-2y=4×2-2×(-4)=16,∴4x-2y的平方根是±4.【解析】根据算术平方根、立方根的定义求出x、y的值,求出4x-2y的值,再根据平方根定义求出即可.本题考查了平方根、立方根、算术平方根的应用,解此题的关键是求出x、y的值,主要考查学生的理解能力和计算能力.23.【答案】解:(1)∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∵AB=AC=12,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+BC=12+15=27;(2)∵AB=AC,∠B=20°,∴∠C=∠B=20°,∴∠BAC=180°-20°-20°=140°,∵AD=DC,∴∠DAC=∠C=20°,∴∠BAD=∠BAC-∠DAC=140°-20°=120°.【解析】(1)根据线段垂直平分线性质求出AD=DC,求出△ABD周长=AB+BC即可;(2)根据等腰三角形性质求出∠C,∠DAC,根据三角形内角和定理求出∠BAC,即可求出答案.本题考查了三角形内角和定理,等腰三角形性质,线段垂直平分线性质的应用,能综合运用性质进行推理是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.【答案】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,AB=BC∠ABD=∠CBDBD=BD,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【解析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.25.【答案】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=12∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)∵∠CDE=∠CED=12∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.【解析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.26.【答案】12s11s或19s54或45或1920或2019【解析】解:(1)当△ABC的周长被线段AP平分为相等的两部分时,点P在BC边上,则AC+CP=×(6+8+10)=12,∴t=12÷1=12(s),故答案为:12s;(2)△APC的面积等于△ABC面积的一半,当点P在BC边上时,×PC×AC=×6×8,即×PC×8=×6×8×,解得,PC=3,∴AC+CP=8+3=11,∴t=11÷1=11(s),当点P在BA边上时,点P为BA的中点,∴AC+CB+BP=8+6+5=19,∴t=19÷1=19(s),故答案为:11s或19s;(3)当点P边AC运动,点Q边AB运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为4÷1=4(s),∴点Q的运动速度为cm/s,△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为5÷1=5(s),∴点Q的运动速度为cm/s,当点P边BA运动,点Q边CA运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P的运动时间为20÷1=20(s),∴点Q的运动速度为cm/s,△APQ≌△DFE时,AP=DF=5,AQ=DE=4,则点P的运动时间为19÷1=19(s),∴点Q的运动速度为cm/s,故答案为:或或或.(1)根据三角形的周长公式计算;(2)分点P在BC边上和点P在BA边上两种情况,根据三角形的面积公式计算;(3)分当点P边AC运动,点Q边AB运动,△APQ≌△DEF和△APQ≌△DFE,当点P边BA运动,点Q边CA运动,△APQ≌△DEF和△APQ≌△DFE四种情况,根据全等三角形的性质解答.本题考查的是全等三角形的性质,三角形的周长和面积计算,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.。
72°50°c baCBAC BDE FA 4231A C OB D A'C O'B'D八年级数学阶段检测卷一、选择题:〔本大题共有10小题,每题2分,共20分.〕1.以下四个图案是我国几家银行的标志,其中是轴对称图形的有〔 〕A.1个B.2个C.3个D.4个 2.以下说法:①角平分线上任意一点到角的两边的线段长度相等;②线段不是轴对称图形;③角是轴对称图形;④线段垂直平分线上的点到这条线段两个端点的距离相等.其中正确的选项是〔 〕 A. ①②③④ B. ①②③ C. ①③④ D. ③④ 3.到三角形三个顶点距离相等的点是〔 〕4.如图,a 、b 、c 分别表示ABC △的三边长,那么下面与ABC △一定全等的三角形是〔 〕A.ab50°B.ab58° C.50°abD.50°72°a5.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是〔 〕6.一块三角形玻璃样板不慎被小强同学磋碎,成了四块完整碎片〔如图〕,聪明的小强经过仔细考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板,你认为以下四个答案中考虑最全面...的的是〔 〕 1,2或2,3去就可以1,4或3,4去就可以 1,4或2,4或3,4 去均可7.如图,请仔细观察用直尺和圆规作一个角'''A O B ∠等于角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是〔 〕 A.SAS B.ASA C.AAS D.SSS第5题图 第6题图 第7题图AONHBPMGEB CAD8.如图,MON∠内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B GH的长为15cm,那么PAB△的周长为〔〕A.5cmB.10cmC.20cmD.15cm9.如图,在ABC△中,AB AC=,BD平分ABC∠交AC于点D,AE BD∥交CB的延长线于点E.假设=35E∠︒,那么BAC∠的度数为〔〕A.40︒B.45︒C.60︒D.70︒10.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC 为一个等腰三角形.满足条件的点C有〔〕A.2个B.4个C.6个D.8个第8题图第9题图第10题图第12题图二、填空题:〔本大题共11空,每空2分,共22分.〕11.在上学的路上,小刚从电动车的观后镜里看到一辆汽车,车前面牌照上的字在平面镜中的像是IXAT,那么这辆车牌照上的字实际是___ ___.12.如图,AC=BD,∠1=∠2,那么△ABC≌,其判定根据是_______。
苏教版八年级数学上册10月月考试卷一、选择题1-8题二填空题9-18题每题3分共(54分)1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图我国四大银行的商标图案中轴对称图形的【】①②③④A.①②③B.②③④C.③④①D.④①②2.按下列各组数据能组成直角三角形的是【】A.11,15,13 B.1,4,5 C.8,15,17 D.4,5,63.如果等腰三角形两边长是6和3,那么它的周长是【】A.9 B.12 C.15或12 D.154.如图所示,有一块直角三角形纸片,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为【】A.1cm B.1.5cm C.2cm D.3cm5.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE=【】A.30°B.40°C.50°D.60°6.如图,点F、A、D、C在同一直线上,△ABC≌△DEF,AD=3,CF=10,则AC 等于【】A.5 B.6 C.6.5 D.77.电子钟镜子里的像如图所示,实际时间是【】A.21:10 B.10:21C.10:51 D.12:018.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是【】A.含30°角的直角三角形;B.顶角是30的等腰三角形;9.等腰三角形一个内角的大小为50°,则其顶角的大小为°.AB CDEF题图第6AB CD E题图第5ABCDE题图第4︰10.如图,已知B 、E 、F 、C 在同一直线上,BF =CE ,AF =DE ,则添加条件 ,可以判断△ABF ≌△DCE .11.如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有 个.12.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD = . 13.如图,由四个直角边分别为3和4全等的直角三角形拼成“赵爽弦图”,其中阴影部分面积为 .14.如图,市政府准备修建一座高AB 为6米的过街天桥,已知地面BC 为8米,则桥的坡面AC 的长度是 米. 15.如图,将矩形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D '处,若∠AFE =65°,则∠C 'EF = °. 16.如图,△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为 .17.已知△ABC 是等边三角形,点D 、E 分别在AC 、BC 上,且CD =BE ,则∠AFD = °. 18.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,DE ⊥AB 于E .若AB =6,则△DBE 的周长 . 三、解答题19.(8分)如图,点A 在直线l 上,请在直线l 上另找一点C ,使△ABC 是等腰三角形.请找出所有符合条件的点,并简要说明作法,保留作图痕迹.lBABCDE F题图第10ABCDE题图第18ABCDE题图第16HABCD题图第12AB CEFD题图第17题图第13ABCD题图第11ABC题图第14ABCDFC'D'题图第1520.(6分)如图,C 为线段AB 的中点,CD 平分∠ACE , CE 平分∠BCD ,且CD =CE ,求证:△ACD ≌△BCE .21.(6分)如图,线段AB 经过线段CD 的中点E ,且AC =AD , 求证:BC =BD .22.(7分)如图,在△ABC 中,AB =13,BC =10, BC 边上的中线AD =12.求:⑴ AC 的长度;⑵ △ABC 的面积.23.(7分)△ABC 中,∠C =90°,AC =3,BC =4,在BC 边上找一点P ,使得点P 到点C 的距离与点P 到边AB 的距离相等,求BP 的长.24.(8分)如图,△ABC 中,∠BAC =110°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.⑴ 求∠DAF 的度数. ⑵ 如果BC =10,求△DAF 的周长.25.(8分)如图,AD 为△ABC 的高,∠B =2∠C ,求证:CD =AB +BD .C DEAC DE ACB ABD CABD EGC(提示:用轴对称知识)26. (8分)△ABC 中,∠ACB =90°,AC =BC =6,M 点在边AC 上,且CM =2,过M点作AC 的垂线交AB 边于E 点.动点P 从点A 出发沿AC 边向M 点运动,速度为每秒1个单位,当动点P 到达M 点时,运动停止.连接EP ,EC .在此过程中, ⑴ 当t 为何值时,△EPC 的面积为10?⑵ 将△EPC 沿CP 翻折后,点E 的对应点为F 点,当t 为何值时,PF ∥EC ?27.(8分)探索与研究:在△ABC 中,∠ABC =90°,分别以边AB 、BC 、CA 向△ABC 外作正方形ABHI 、正方形BCGF 、正方形CAED ,连接GD ,AG ,BD .⑴ 如图1,求证:AG =BD . ⑵ 如图2,试说明:S △ABC =S △CDG . (提示:正方形的四条边相等,四个角均为直角)图1 图2A CBFGIHACBFGEIHABC DM参考答案一、选择题(共16分)1、B2、C3、D4、A5、B6、C7、B8、C 二、填空题(共20分)9、50°或80° 10、答案不唯一 11、3 12、51213、114、10 15、65° 16、4 17、60°18、6三、解答题(共64分)19.如图,作线段AB 的中垂线,交l 于点1C ;以点A 为圆心,AB 长为半径作圆,交直线l 于点2C 与点3C ;以点B 为圆心,AB 长为半径,交直线l 于点4C (另一交点为A ).l每点2分,共8分. 20.证明:∵C 为线段AB 的中点∴AC =CB ∵CD 平分∠ACE ∴∠ACD =∠DCE ∵CE 平分∠BCD ∴∠DCE =∠ECB∴∠ACD =∠ECB ------------------------------------------------------------------------- 2分在△ACD 和△ECB 中 AC =CB ∠ACD =∠ECB CD =CE∴△ACD ≌△BCE (SAS ) ----------------------------------------------------------------- 6分21.解:∵AC =AD ,E 是线段CD 的中点∴AE ⊥CD --------------------------------------------------------------------------------------- 3分∴AB 是线段CD 的垂直平分线∴BC =BD --------------------------------------------------------------------------------------- 6分22.解:⑴ AC =13 ⑵△ABC 的面积为60.说明直角2分,AC 长2分,面积2分.23. 解:如图,作∠CAB 平分线,交BC 于点P .过P 作PD ⊥AB ,垂足为点D ,则PD =PC , 且Rt ADP Rt ACP ∆∆≌.∴AC =AD =3,从而BD =2 --------------------------------------------------------------------- 2分设CP =x ,则PD =x ,BP =4-x . 从而222(4)2x x -=+.解得:32x =,∴BP =52 即BP 的长为52-------------------------------------------------------------------------------------- 6分24.解:⑴ 40°.方法不唯一. ----------------------------------------------------------------------- 5分⑵ △DAF 的周长为10. ---------------------------------------------------------------------------- 8分25.证明:由于AD ⊥BC ,故可作出△ABD 关于直线AD 的对称图形,点B 的对称点E 必在BC 边上.(也可以用传统作辅助线的方法叙述:在线段CD 上取一点E ,使DE =BD ),连结AE . ---------------------------------------------------------------------------------------- 2分ACBD说明AB =AE =EC ,BD =DR -------------------------------------------------------------------- 6分结论CD =AB +BD ---------------------------------------------------------------------------------- 8分26.解:⑴ 当t =1秒时,△EPC 的面积为10.∵△ABC ,∠ACB =90°,AC =BC =6 ∴∠A =∠B =45° ∵EM ⊥AC∴∠AEM =∠A =45° ∴AM =EM =4EPC S ∆=ME PC ⋅21=4)6(21⋅-t =10解之得t =1经检验,t =1时,符合题意. ----------------------------------------------------------- 4分⑵ 当t =2秒时,PF ∥EC . 由翻折可得PF =PE ,∠FPC =∠EPC ∵PF ∥EC ∴∠FPC =∠PCE ∴∠EPC =∠PCE ∴PE =CE ∵EM ⊥AC ∴CM =PM =2 ∴AP =2 ∴t =2经检验,t =2时,符合题意. ----------------------------------------------------------- 8分27.解:⑴ ∵正方形ACDE 和正方形BCGF 中,AC =DC ,BC =GC ,∠ACD =∠BCG =90° ∴∠ACD +∠ACB =∠BCG +∠ACB 即∠ACG =∠DCB 在△ACG 和△DCB 中, AC =DC∠ACG =∠DCB CG =CB∴△ACG ≌△DCB (SAS )∴AG =BD ------------------------------------------------------------------------------------- 4分⑵ 说理方法不唯一.如图,作BM ⊥AC 于M ,作GN ⊥CD ,交DC 延长线于N . ∴ ∠BMC =∠GNC =90° ∵∠MCN =∠BCG =90°∴∠MCN -∠BCN =∠BCG -∠BCN 即∠BCM =∠GCN ∵BC =GC∴△BMC ≌△GNC (AAS ) ∴BM =NG ∵AC =CD ∴ABC S ∆=21AC ·BM =21CD ·NG =CDG S ∆ ------------------------------------- -8分ACBFGEDIHACBFGE DIHMN。
八年级(上)月考数学试卷(10月份)一、选择题(本大题共8小题,共24.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.等腰三角形的两边长分别为3cm和7cm,则周长为()A. 13cmB. 17cmC. 13cm或17cmD. 11cm或17cm3.到三角形三条边的距离相等的点是三角形()A. 三条角平分线的交点B. 三条高的交点C. 三边的垂直平分线的交点D. 三条中线的交点4.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A. 10:05B. 20:01C. 20:10D. 10:025.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90∘6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A. 50B. 62C. 65D. 687.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①AD⊥BC;②DB=DC;③DE=DF;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个8.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A. 2mB. 3mC. 6mD. 9m二、填空题(本大题共10小题,共30.0分)9.国旗上的一个五角星有______条对称轴.10.等腰三角形中有一个内角为80°,则其底角的度数是______.11.如图,△OAD≌△OBC,且∠O=58°,∠C=20°,则∠OAD=______°.12.如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件______,使△AEF≌△BCD.13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为______.14.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.若BC=21cm,则△BCE的周长是______ cm.15.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有______个.16.一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,则x+y=______.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为______度.18.如图,已知AB=12米,MA⊥AB于A,MA=6米,射线BD⊥AB于B,P点从B向A运动,每秒走1米,Q点从B向D运动,每秒走2米,P、Q同时从B出发,则出发______秒后,在线段MA上有一点C,使△CAP与△PBQ全等.三、解答题(本大题共7小题,共46.0分)19.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要在∠AOB内部修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)20.如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.21.已知:如图,BC∥EF,AD=BE,BC=EF,试说明△ABC≌△DEF.22.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.23.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.24.如图,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC(1)求证:AB=AC;(2)求证:点O在∠BAC的平分线上.25.已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C=120°.现有两动点P、Q分别从B、O两点同时出发,点P以每秒3个单位的速度沿BO向点O运动,点Q以每秒1个单位的速度沿OC向点C运动,当其中一个点到达终点时,另一个点也随即停止运动.请回答下列问题:(1)在运动过程中,△OPQ的面积记为S,请用含有时间t的式子表示S.(2)在等边△OAB的边上(点A除外),是否存在点D,使得△OCD为等腰三角形?如果存在,这样的点D共有______个.(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着点C旋转,使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:当7为腰时,周长=7+7+3=17;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17.故选:B.题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.本题考查的是等腰三角形的性质,在解答此题时要进行分类讨论.3.【答案】A【解析】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.根据角的平分线上的点到角的两边的距离相等解答即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.【答案】B【解析】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧.5.【答案】C【解析】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】A【解析】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16-3×4-6×3=50.故选:A.由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.本题考查的是全等三角形的判定的相关知识,是中考常见题型.7.【答案】A【解析】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故①②正确,在△CDE与△DBF中,,∴△CDE≌△DBF,(ASA),∴DE=DF,CE=BF,故③正确;∵AE=2BF,∴AC=3BF,故④正确.故选:A.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.8.【答案】C【解析】解:在直角△ABC中,BC=8m,AC=6m.则AB===10.∵中心O到三条支路的距离相等,设距离是r.△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即:AC•BC=AB•r+BC•r+AC•r即:6×8=10r+8r+6r∴r==2.故O到三条支路的管道总长是2×3=6m.故选:C.根据:△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.本题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.9.【答案】五【解析】解:国旗上的一个五角星有五条对称轴.故答案为:五.根据轴对称图形的概念解答.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.【答案】50°或80°【解析】解:分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°-80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50°或80°.故答案为:50°或80°.由于不明确80°的角是等腰三角形的底角还是顶角,故应分80°的角是顶角和底角两种情况讨论.本题考查的是等腰三角形的性质及三角形内角和定理;解答此题时要注意80°的角是顶角和底角两种情况,不要漏解,分类讨论是正确解答本题的关键.11.【答案】102【解析】解:∵△OAD≌△OBC,∠O=58°,∠C=20°,∴∠D=∠C=20°,∴∠OAD=180°-∠D-∠O=180°-20°-58°=102°,故答案为:102.根据全等三角形的性质求出∠D,根据三角形内角和定理求出即可.本题考查了三角形内角和定理,全等三角形的性质的应用,能求出∠D的度数是解此题的关键,注意:全等三角形的对应角相等.12.【答案】AF=DB【解析】解:AF=DB,理由是:∵AE∥BC,∴∠A=∠B,在△AEF和△BCD中∴△AEF≌△BCD(SAS),故答案为:AF=DB.根据平行线性质得出∠A=∠B,根据全等三角形的判定推出即可,题目是一道开放型的题目,答案不唯一.本题考查了平行线的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.【答案】15【解析】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.要求△ABD的面积,现有AB=10可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.【答案】53【解析】解:∵DE是AB的垂直平分线,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=32cm,BC=21cm,∴△BCE的周长=32+21=53cm.故答案为:53.根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=BE,然后求出△BCE的周长=AC+BC,代入数据进行计算即可得解.本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.15.【答案】8【解析】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.16.【答案】11【解析】解:∵一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,∴x=6,y=5,则x+y=11.故答案为:11.直接利用全等三角形的性质得出x,y的值进而得出答案.此题主要考查了全等三角形的性质,正确得出x,y的值是解题关键.17.【答案】108【解析】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC-∠ABO=63°-27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.故答案为:108.连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,根据全等三角形的性质可得OB=OC,根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.【答案】4秒【解析】解:当△APC≌△BQP时,AP=BQ,即12-x=2x,解得:x=4;当△APC≌△BPQ时,AP=BP=AB=6米,此时所用时间为6秒,AC=BQ=12米,不合题意,舍去;综上,出发4秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故答案为:4秒.分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.19.【答案】解:如图所示:P点即为所求.【解析】利用角平分线的性质以及线段垂直平分线的性质分别得出即可.此题主要考查了应用设计与作图,熟练应用线段垂直平分线的性质是解题关键.20.【答案】解:【解析】不同的对称轴,可以有不同的轴对称图形,所以可以按照找出的不同的对称轴,再思考如何画轴对称图形.考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.21.【答案】解:∵BC∥EF,∴∠CBA=∠FED,∵AD=BE,∴AD+BD=BE+BD,即AB=DE,在△ABC和△DEF中,∵CB=FE∠CBA=∠FEDAB=DE,∴△ABC≌△DEF.【解析】根据平行线的性质得到∠CBA=∠FED,继而利用SAS科判定两三角形的全等.本题考查了全等三角形的判定,解答此类问题注意掌握三角形全等的判定定理:SAS、AAS、SSS,直角三角形还可以运用HL判定全等.22.【答案】证明:∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,又∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,而∠ACD+∠DAC=90°,∴∠BCE=∠CAD.在△ADC和△CEB中∵∠BCE=∠DAC∠ADC=∠CEBAC=BC,∴△ADC≌△CEB(AAS).∴AD=CE,DC=EB.又∵DE=DC+CE,∴DE=EB+AD.【解析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法.23.【答案】证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=90°-∠DOP,∠EPF=90°-∠EOP,∴∠DPF=∠EPF,在△DPF和△EPF中PD=PE∠DPF=∠EPFPF=PF(SAS),∴△DPF≌△EPF∴DF=EF.【解析】先根据点P在∠AOB的角平分线OC上,PE⊥OB可求出PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,由全等三角形的判定定理可得出△DPF≌△EPF,进而可得出答案.本题考查的是角平分线的性质及全等三角形的判定定理与性质,在解答此题时要注意应用角平分线的性质进行求解.24.【答案】证明:如图,连接AO.(1)∵CE⊥AB,BD⊥AC,∴∠AEC=∠ADB=∠BEC=∠CDB=90°.∵OB=OC,∴∠DBC=∠ECB.在△BCD和△CBE中,∠BEC=∠CDB∠BCE=∠DBCBC=CB,∴△BCD≌△CBE(AAS),∴∠DBC=∠ECB,故AB=AC.(2)∵由(1)知,△BCD≌△CBE,∴BD=CE.∵OB=OC,∴BD-OB=EC-OC∴OD=OE.在Rt△ODA和Rt△OEA中,AO=AOOD=OE,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,∴OA平分∠BAC.【解析】(1)先根据条件可以得出∠AEC=∠ADB=∠BEC=∠CDB=90°就可以得出△BCD≌△CBE,则∠DBC=∠ECB,故AB=AC.(2)由(1)中全等三角形的性质得到:BD=CE,就可以得出OE=OD,再证明△ODA≌△OEA就可以得出∠DAO=∠EAO而得出结论.本题考查了垂直的性质的运用,AAS,HL证明三角形全等的运用,等式的性质的运用,角平分线的判定的运用,解答时证明三角形是关键.25.【答案】4【解析】解:(1)如图1,∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.∴∠POQ=90°,∵OQ=t,OP=3-3t.∴S△OPQ=OQ•OP=t•(3-3t)=-t2+t,即S=-t2+t;(2)如图2,(i)当D点在OA上,①以D为顶点,D1C=OD1,②以O为顶点,OD2=OC,(ii)当D点在OB上,由于∠BOC=90°,因此不存在以C或D为顶点的等腰三角形,以O为顶点时,OD3=OC.(iii)当D点在AB上时,此时OD的最短距离为OD⊥AB时,此时OD≠OC,不存在以O为顶点的等腰三角形;当以C为顶点时,D点和A点重合,当以D为顶点时,OD4=CD4,综上所述,这样的点D共有4个;故答案为:4;(3)△BMN的周长不发生变化.理由如下:延长BA至点F,使AF=OM,连接CF.(如图3)又∵∠MOC=∠FAC=90°,OC=AC,在△MOC和△FAC中,∴△MOC≌△FAC(SAS),∴MC=CF,∠MCO=∠FCA.∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA=∠OCA-∠MCN=60°,∴∠FCN=∠MCN.在△MCN和△FCN中,,∴△MCN≌△FCN(SAS),∴MN=NF.∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=6.∴△BMN的周长不变,其周长为6.(1)根据题意分别表示出QO,OP的长,进而得出S与t的关系式;(2)如果△OCD为等腰三角形,那么分D在OA边或者OB边上或AB边上三种情形.每一种情形,都有可能O为顶点,C为顶点,D为顶点,分别讨论,得出答案;(3)如果延长BA至点F,使AF=OM,连接CF,则由SAS可证△MOC≌△FAC,得出MC=CF,再由SAS证出△MCN≌△FCN,得出MN=NF,进而求出△BMN 的周长.本题主要考查了等腰三角形、等边三角形的性质、全等三角形的判定与性质、直角三角形面积求法等知识,得出△OCD为等腰三角形时,注意分类讨论,做到不重复,不遗漏.。
八年级(上)月考数学试卷(10月份)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是( )A. B. C. D.2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A. AB=ACB. BD=CDC. ∠B=∠CD. ∠BDA=∠CDA3.如图,将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠1=56°,那么∠2的度数是( )A. 56∘B. 58∘C. 66∘D. 68∘4.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有( )A. 5B. 6C. 4D. 75.下列各条件不能作出唯一直角三角形的是( )A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )A. 3B. 4C. 5D. 3或4或57.到三角形三边的距离都相等的点是三角形的( )A. 三条角平分线的交点B. 三条边的中线的交点C. 三条高的交点D. 三条边的垂直平分线的交点8.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A. 一处B. 两处C. 三处D. 四处9.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,∠BAC=84°,则∠BDC=( )A. 84∘B. 96∘C. 100∘D. 不能确定10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为( )A. 8B. 12C. 4D. 6二、填空题(本大题共10小题,共24.0分)11.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.12.如图,△ABC≌△ADE,则AB=______,∠E=∠______.若∠BAE=120°,∠BAD=40°,则∠BAC=______.13.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有______个.14.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是______.15.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.16.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=______cm.17.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=FN,②CD=DN,③∠FAN=∠EAM.④△ACN≌△ABM.其中正确的有______.18.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E,D,BD=CF,BE=CD.若∠AFD=155°,则∠EDF=______.19.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______.20.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是______.三、解答题(本大题共8小题,共56.0分)21.尺规作图:如图,在四边形ABCD内找一点P,使得点P到AB、BC的距离相等,并且点P到点A、D的距离也相等.(不写作法,保留作图痕迹).22.尺规作图:如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上,①△ABC的面积为______.②在图中画出与△ABC关于直线l成轴对称的△A1B1C1.③在直线l上画出点Q,使QA+QC最小.23.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.24.在△ABC中,AB=AC,G为三角形外一点,且GB=GC(1)求证:直线AG垂直平分BC;(2)点D在AG上,求证:DB=DC.25.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(2)已知AC=20,BE=4,求AB的长.26.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.27.如图1,在△ABC中,∠ACB=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接CE,BG,EG.(1)试猜想线段CE和BG的数量及位置关系,并证明你的猜想;(2)填空:△ABC与△AEG面积的关系______;(3)如图2,学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,已知△CDG是直角三角形,∠CGD=90°,DG=3m,CG=4m,CD=5m,四边形ABCD、CIHG、GFED均为正方形,六边形花圃ABIHFE的面积为______.28.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,①猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.②若线段BD=a,CE=b.请你求出△ABC的面积(用含a,b的代数式表示);(2)如图2,当D、E两点在直线BC的两侧时,BD、CE、DE三条线段的数量关系为______;(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)答案和解析1.【答案】A【解析】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D 不符合题意.故选:B.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.3.【答案】D【解析】解:根据折叠可得∠1=∠EFB′,∵∠1=56°,∴∠EFB′=56°,∴∠B′FC=180°-56°-56°=68°,∵AD∥BC,∴∠2=∠B′FC=68°,故选:D.首先根据根据折叠可得∠1=∠EFB′=56°,再求出∠B′FC的度数,然后根据平行线的性质可得∠2=∠B′FC=68°.此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.4.【答案】A【解析】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选:A.根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】B【解析】解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选:B.根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.【答案】B【解析】解:4-2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.所以EF的长也是4.故选:B.因为两个全等的三角形对应边相等,所以求EF的长就是求BC的长.本题考查全等三角形的性质,全等三角形的对应边相等,以及三角形的三边关系.7.【答案】A【解析】解:到三角形三边的距离都相等的点是三角形的三条角平分线的交点.故选:A.由到三角形三边的距离都相等的点是三角形的三条角平分线的交点;到三角形三个顶点的距离都相等的点是三角形的三条边的垂直平分线的交点.即可求得答案.此题考查了线段垂直平分线的性质以及角平分线的性质.此题比较简单,注意熟记定理是解此题的关键.8.【答案】D【分析】此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.9.【答案】B【解析】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故选:B.首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180゜,即可求得答案;此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.10.【答案】D【解析】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50-S,解得S=6.故选:D.过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求△EDF解即可.本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.11.【答案】3【解析】解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO 共3对.找寻时要由易到难,逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.【答案】AD C 80°【解析】解:∵△ABC≌△ADE,∴AB=AD,∠E=∠C,∠BAC=∠DAE;∵∠DAC是公共角∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,已知∠BAE=120°,∠BAD=40°,∴∠CAE=40°,∠BAC=∠BAE-∠CAE=120°-40°=80°.故答案分别填:AD、∠C、80°.根据△ABC≌△ADE,可得其对应边对应角相等,即可得AB=AD,∠E=∠C,∠BAC=∠DAE;由∠DAC是公共角易证得∠BAD=∠CAE,已知∠BAE=120°,∠BAD=40°,即可求得∠BAC的度数.本题考查了全等三角形的性质及比较角的大小,解题的关键是找到两全等三角形的对应角、对应边.13.【答案】4【解析】解:①角;③等边三角形;④线段;⑤等腰三角形是轴对称图形,故答案为:4.根据轴对称图形的概念判断即可.本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可完全重合.14.【答案】9087【解析】解:由图分析可得题中所给的“”与“9087”成轴对称.故答案为:9087.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查了镜面对称的性质;解决本题的关键是得到对称轴,进而得到相应数字.也可以简单的写在纸上,然后从纸的后面看.15.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.16.【答案】6【解析】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.本题考查了线段垂直平分线的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.【答案】①③④【解析】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故③正确;在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),故④正确;∴CN=BM.∵CF=BE,∴EM=FN,故①正确,CD与DN的大小无法确定,故②错误.故答案为①③④.只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.18.【答案】65°【解析】解:∵∠AFD=155°,∴∠CFD=25°,Rt△DEB和Rt△FDC中,,∴Rt△DEB≌Rt△FDC(HL),∴∠BDE=∠CFD=25°,∴∠EDF=180°-90°-25°=65°,故答案为:65°.证明Rt△DEB≌Rt△FDC,根据全等三角形的性质得到∠BDE=∠CFD=25°,结合图形计算.本题考查的是全等三角形的判定和性质,掌握两直角三角形确定的判定定理是解题的关键.19.【答案】4【解析】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.20.【答案】120°【解析】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.21.【答案】解:如图,点P为所作.【解析】作∠ABC的平分线和AD的垂直平分线,它们的交点为P点.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.【答案】4【解析】解:①△ABC的面积为3×3-×1×3-×2×2-×1×3=4,故答案为:4.②如图,△A1B1C1即为所求.③如图,点Q即为所求.①根据割补法求解可得;②分别作出点A,B,C关于直线l的对称点,再顺次连接即可得;③连接AC1,与直线l的交点即为所求.本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置,熟记轴对称的性质是解题的关键.23.【答案】证明:∵BE=CF(已知),∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,∠A=∠D∠B=∠DEFBC=EF,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).【解析】根据BE=CF,求出BC=EF,根据AAS推出△ABC≌△DEF,根据全等三角形的性质推出即可.本题考查了全等三角形的性质和判定的应用,解此题的关键是推出△ABC≌△DEF,注意:全等三角形的对应边相等.24.【答案】证明:(1)∵GB=CG,AB=AC,∴直线AG垂直平分BC;(2)∵直线AG垂直平分BC,点D在AG上,∴DB=DC.【解析】(1)由GB=GC,得出点G在BC的垂直平分线上,同理得出点A在BC的垂直平分线上,即可得出结论;(2)根据线段垂直平分线的性质即可得到结论.本题考查了线段垂直平分线的判定、等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.25.【答案】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,BD=CDBE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20-4=16,∴AB=AE-BE=16-4=12.【解析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.26.【答案】解:(1)∵在Rt△ABC中,∠BAC=90°,∠ABC=60°,∴∠ACB=30°,∵AD、CE分别平分∠BAC,∠ACB,∴∠CAO=12∠BAC=45°,∠ACO=12∠ACB=15°,∴∠AOE=∠CAO+∠AOC=45°+15°=60°.(2)如图,在AC上截取AF=AE,连接OF∵AD平分∠BAC,∴∠BAD=∠CAD,在△AOE和△AOF中AE=AF∠EAO=∠FAOAO=AO,∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF=60°,∴∠AOF=∠COD=60°=∠COF,在△COF和△COD中,∠FOC=∠DOCCO=CO∠FCO=∠DCO,∴△COF≌△COD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD.【解析】(1)根据三角形内角和定理和角平分线的定义解答;(2)通过角之间的转化可得出△COF≌△COD,进而可得出线段之间的关系,即可得出结论.本题主要考查了全等三角形的判定及性质,根据在AC上截取AF=AE得出△AOE≌△AOF是解题关键.27.【答案】S△ABC=S△AEG 74m2【解析】解:(1)线段CE和BG的数量及位置关系:CE=BG,CE⊥BG.证明:∵∠EAB=∠GAC=90°,∴∠EAC=∠BAG,在△EAC和△BAG中,,∴△EAC≌△BAG(SAS),∴CE=BG,∠AEC=ABG,∵∠AEC+∠APE=90°,∠APE=∠BPC,∴∠BPC+∠ABG=90°,∴CE⊥BG;(2)如图1,过点E作EH⊥AG交GA延长线于H,∴∠EHA=∠90°=∠BCA,∵∠EAH+∠BAH=90°,∠BAC+∠BAH=90°,∴∠EAH=∠BAC,在△EHA和△BCA中,,∴△EHA≌△BCA(AAS),∴EH=BC,∵S△ABC=AC×BC=AC×EH,S△AGE=AG×EH=AC×EH,而AC=AG,∴△ABC与△AEG面积相等.故答案为:S△ABC=S△AEG;(3)如图2,∵四边形ABCD,CIHG、GFED均为正方形,∠CGD=90°,∴CG=GH=4,DG=FG=3,△CDG与△HGF全等,同(2)的方法可得,S△BCI=S△CDG,S△ADE=S△CDG∴S六边形ABIHFE=S正方形ABCD+S△BCI+S正方形CIHG+S△FGH+S正方形DEFG+S△ADE+S△CDG =S正方形ABCD+S△CDG+S正方形CIHG+S△FGH+S正方形DEFG+S△CDG+S△CDG =S正方形ABCD+S正方形CIHG+S△FGH+S正方形DEFG+3S△CDG=CD2+CG2+GH×FG+DG2+3×CG×DG=52+42+×4×3+32+3××4×3=25+16+6+9+18=74(m2).故答案为:74m2.(1)易证∠EAC=∠BAG,即可证明△EAC≌△BAG,可得CE=BG,∠AEC=ABG,即可证明CE⊥BG;(2)先判断出∠EAH=∠BAC,从而△EHA≌△BCA,即可得出EH=BC,最后用三角形的面积公式计算即可得出结论;(3)由(2)结论得出S△BCI=S△CDG,S△ADE=S△CDG,而△CDG和△FGH面积相等,最后用求得七部分面积的和即可.此题属于四边形的综合题,主要考查了全等三角形的判定和性质,同角的余角相等,三角形的面积公式,正方形的面积公式的综合应用,解本题的关键是作辅助线构造全等三角形,运用等底等高的三角形面积相等,得出S△ABC=S△AGE.28.【答案】BD+DE=CE【解析】解:(1)①∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;②∵AE=BD,BD=a,∴AE=a,在Rt△AEC中,AC2=AE2+CE2=a2+b2,=.(2)BD+DE=CE;如图2,理由如下:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵BD⊥l,CE⊥l,∴∠ADB=∠AEC=90°,∴∠CAD+∠ACE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE+DE=AD,∴BD+DE=CE.故答案为:BD+DE=CE.(3):①当点P在BA上,点Q在AC上,如图3,则PB=2t,CQ=3t,AP=22-2t,AQ=28-3t,∵△PFA与△QAG全等,∴PA=AQ,即22-2t=28-3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;②当点P在AC上,点Q在AB上,如图4,则PA=2t-22,AQ=3t-28,∵△PFA与△QAG全等,∴PA=AQ,即2t-22=3t-28,解得t=6,舍去;即P运动6秒时,△PFA与△QAG全等,当点Q停在点B处,点P在AC上,由PA=QA得2t-22=22,解得t=22,舍去.综上所述:当t等于6时,△PFA与△QAG全等.(1)①根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;②根据勾股定理求出AC2,根据,即可解答.(2)由垂线的定义和角的互余关系得出∠ADB=∠AEC=90°,∠BAD=∠ACE,由AAS证明△ABD≌△CAE,得出对应边相等BD=AE,AD=CE,由AE+DE=AD,即可得出结论.(3)分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22-2t,AQ=28-3t,利用三角形全等得PA=AQ,即22-2t=28-3t;当点P在AC上,点Q在AB上,如图2,则PA=2t-22,AQ=3t-28,由PA=AQ,即2t-22=3t-28;当点Q停在点B处,点P在AC上,由PA=QA得2t-22=22,然后分别解方程求出t,再根据题意确定t的值.本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.。
2015—2016学年度第一学期第一次阶段性检测八年级数学时间:100分钟,满分100分 命题人:888一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在表格相应的位置)1. 如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图我国四大银行的商标图案中轴对称图形的有 ① ② ③ ④A .①②③B .①②④C .①③④D .②③④2. 如图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不恰当...的是 A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠3.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有 A .四对 B .三对 C .二对 D .一对4、如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△CAN ≌△BAM ;④CD =DN .其中正确的结论是 ( )A .①②③B .②③C .①②D .②③④5、下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形. ③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.④全等三角形的所有边相等。
其中正确的有学校:班级: 姓名: 考试号:装订线内请勿答题BCA DEOD图1.1-15A .0个B .1个C .2个D .3个6、如图,△ABC 与△A'B'C'关于直线l 对称,若∠A =68°,∠C'=38°,则∠B 的度数为 ( ) A .38° B .74° C .94° D .68°7、根据下列已知条件,能惟一画出△ABC 的是( ) A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4 D .∠C =90°,AB =68、如图,点F 、A 、D 、C 在同一直线上,△ABC ≌△DEF ,AD =4,CF =10,则AC 等于A .7B .6.5C .6D . 5二、填空题(本大题共有8小题,每小题2分,共16分。
苏教版八年级数学上册10月份月考测试卷一.选择题(共8小题,每小题3分,共24分)1.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D2.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为()A.13 B.3 C.4 D.63.下列图形中,是轴对称图形的是()A.B. C.D.4.下列图形中对称轴最多的是()A.圆B.正方形C.角D.线段5.若等腰三角形的一个角为70°,则顶角为()A.70°B.40°C.40°或70°D.80°6.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.608.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题(共10小题,每小题3分,满分30分)9.如图,△ABC≌△ADE,∠B=25°,则∠D=°.10.若点P在线段AB的垂直平分线上,PA=5,则PB=.11.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.12.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.13.将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是(填序号).14.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.15.等腰三角形的两边长分别为2cm和5cm,则它的周长是.16.如图,把矩形ABCD沿EF对折后两部分重合,若∠1=50°,则∠AEF=.17.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是.18.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三、解答题(共2小题,满分10分)19.某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).20.如图,在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上.请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小.四、解答题(共6小题,满分46分)21.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.22.已知:如图,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.试问BE 与CF的关系,并加以说明.23.如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?24.如图,在△ABC中,AB=AC,AD是△ABC的中线,E是AC的中点,连接DE,DF ⊥AB于F.求证:(1)∠B=∠EDC;(2)∠BDF=∠ADE.25.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)若∠ABC=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.26.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF ⊥BC(点C、F不重合),并说明理由.答案解析一.选择题(共8小题,每小题3分,共24分)1.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D【考点】全等图形.【分析】两三角形全等,根据全等三角形的性质判断.【解答】解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选C.2.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为()A.13 B.3 C.4 D.6【考点】全等图形.【分析】可以利用已知条件先求出DF的长度,再根据三角形全等的意义得到AC=DF,从而得出AC的长度.【解答】解:∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,∴DF=6,即AC=6,故选D.3.下列图形中,是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A不是轴对称图形,故错误;B不是轴对称图形,故错误;C是轴对称图形,故正确;D不是轴对称图形,故错误;故选:C.4.下列图形中对称轴最多的是()A.圆B.正方形C.角D.线段【考点】轴对称的性质.【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.【解答】解:A、圆的对称轴有无数条,它的每一条直径所在的直线都是它的对称轴;B、正方形的对称轴有4条;C、角的对称轴有1条;D、线段的对称轴有2条.故图形中对称轴最多的是圆.故选A.5.若等腰三角形的一个角为70°,则顶角为()A.70°B.40°C.40°或70°D.80°【考点】等腰三角形的性质.【分析】题中没有指明该角是顶角还是底角,故应该分两种情况进行分析.【解答】解:(1)当70°角为顶角,顶角度数即为70°;(2)当70°为底角时,顶角=180°﹣2×70°=40°.故选C.6.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【考点】轴对称的性质.【分析】根据轴对称的性质作答.【解答】解:A、AB与DF不是对应线段,不一定平行,故错误;B、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;C、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,AB=DE,正确;D、△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.故选:A.7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】全等三角形的判定.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.二、填空题(共10小题,每小题3分,满分30分)9.如图,△ABC≌△ADE,∠B=25°,则∠D=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠B=∠D,即可得出答案.【解答】解:∵△ABC≌△ADE,∠B=25°,∴∠D=∠B=25°,故答案为:25.10.若点P在线段AB的垂直平分线上,PA=5,则PB=5.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得PB=PA.【解答】解:∵点P在线段AB的垂直平分线上,∴PB=PA=5.故答案为:5.11.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【考点】直角三角形全等的判定.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.12.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为6.【考点】轴对称的性质.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=6,∴△PMN的周长=6.故答案为:6.13.将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是③(填序号).【考点】剪纸问题.【分析】结合空间思维,分析折叠的过程及剪菱形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在垂直于斜边的位置上剪菱形,则直角顶点处完好,即原正方形中间无损,且菱形关于对角线对称.故答案为:③.14.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有5种.【考点】利用轴对称设计图案.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处.故答案为:5.15.等腰三角形的两边长分别为2cm和5cm,则它的周长是12cm.【考点】等腰三角形的性质;三角形三边关系.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得等腰三角形的周长【解答】解:∵等腰三角形的两条边长分别为2cm,5cm,∴由三角形三边关系可知;等腰三角形的腰长不可能为2,只能为5,∴等腰三角形的周长=5+5+2=12cm.故答案为:12cm.16.如图,把矩形ABCD沿EF对折后两部分重合,若∠1=50°,则∠AEF=115°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据翻折的性质可得∠2=∠1,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:∵矩形ABCD沿EF对折后两部分重合,∠1=50°,∴∠3=∠2==65°,∵矩形对边AD∥BC,∴∠AEF=180°﹣∠3=180°﹣65°=115°.故答案为:115°.17.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是16.【考点】全等三角形的判定与性质;垂线段最短.【分析】由条件易知△BFE与△ADE全等,从而BF=AD,则BF+CD=AD+CD=AC=6,所以只需FD最小即可,由垂线段最短原理可知,当FD垂直AC时最短.【解答】解:∵BF∥AC,∴∠EBF=∠EAD,在△BFE和△ADE中,,∴△BFE≌△ADE(ASA),∴BF=AD,∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD,∴当FD⊥AC时,FD最短,此时FD=BC=5,∴四边形FBCD周长的最小值为5+11=16,故答案为16.18.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.三、解答题(共2小题,满分10分)19.某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).【考点】角平分线的性质;线段垂直平分线的性质.【分析】分别作出AD的垂直平分线及∠ABC的平分线,两条直线的交点即为P点的位置.【解答】解:(1)①分别以A、D为圆心,以大于AD为半径画圆,两圆相交于E、F两点;②连接EF,则EF即为线段AD的垂直平分线.(2)①以B为圆心,以大于AB长为半径画圆,分别交AB、BC为G、H;②分别以G、H为圆心,以大于GH为半径画圆,两圆相交于点I,连接BI,则BI即为∠ABC的平分线.③BI与EF相交于点P,则点P即为所求点.20.如图,在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上.请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)连接B1C与DE交于点P,则点P即为所求点;(3)连接A1C与DE交于点Q,则点Q即为所求点.【解答】解:(1)如图所示,△A1B1C1就是△ABC关于直线DE对称的三角形;(2)如图所示,点P就是所求作的点;(3)如图所示,点Q就是所求作的点.四、解答题(共6小题,满分46分)21.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【考点】全等三角形的判定.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).22.已知:如图,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.试问BE 与CF的关系,并加以说明.【考点】全等三角形的判定与性质;角平分线的性质.【分析】先由角平分线的性质就可以得出DB=DF,再证明△BDE≌△FDC就可以求出结论.【解答】解:BE=CF.理由:∵∠B=90°,∴BD⊥AB.∵AD为∠BAC的平分线,且DF⊥AC,∴DB=DF.在Rt△BDE和Rt△FDC中,,∴Rt△BDE≌Rt△FDC(HL),∴BE=CF.23.如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?【考点】全等三角形的性质.【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD ﹣BE代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.24.如图,在△ABC中,AB=AC,AD是△ABC的中线,E是AC的中点,连接DE,DF ⊥AB于F.求证:(1)∠B=∠EDC;(2)∠BDF=∠ADE.【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,∠ADB=∠ADC=90°,即可得到结论;(2)根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵AD是△ABC点的中线,∴∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠C=∠EDC,∴∠B=∠EDC;(2)∵AE=DE,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE.25.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)若∠ABC=70°,则∠MNA的度数是50°.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,根据线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,根据三角形内角和定理就可得出∠ANB=100°,根据等腰三角形三线合一就可求得∠MNA=50°;(2)①根据△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②根据轴对称的性质,即可判定P就是N点,所以△PBC的周长最小值就是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,此时P和N重合,即△BNC的周长就是△PBC的周长最小值,∴△PBC的周长最小值为14cm.26.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为垂直,线段CF、BD的数量关系为相等;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF ⊥BC(点C、F不重合),并说明理由.【考点】全等三角形的判定与性质.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.2016年12月8日。
2015-2016学年江苏省无锡市格致中学八年级(上)月考数学试卷(10月份)一、选择题(3×10=30)1.下列交通标识中,是轴对称图形的是()A.B.C.D.2.等腰三角形的一边等于5,一边等于12,则它的周长是()A.22 B.29 C.22或29 D.173.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组4.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP6.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块8.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.910.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6二、填空题11.如图,是从镜中看到的一串数字,这串数字应为.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= .13.如图,若∠1=∠2,加上一个条件,则有△AOC≌△BOC.14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= °.15.如图,△ABC中,∠C=90°,AC=BC=a,AB=b,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,则△DEB的周长为.(用a、b代数式表示)16.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.17.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.18.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.三、解答题19.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).20.要在公路MN上修一个车站P,使得P与A,B两个地方的距离和最小,请在图中画出P 的位置.21.如图所示,在△AFD和△BEC中,点A、E、F、C在同一条直线上,有下面四个论断:(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC,请你从这四个条件中选出三个作为已知条件(3个条件都用上),另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.23.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.24.如图,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得使∠ADB=∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.25.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?26.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.2015-2016学年江苏省无锡市格致中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(3×10=30)1.下列交通标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念判断各项即可.【解答】解:由轴对称的概念可得,只有B选项符合轴对称的定义.故选B.2.等腰三角形的一边等于5,一边等于12,则它的周长是()A.22 B.29 C.22或29 D.17【考点】等腰三角形的性质;三角形三边关系.【分析】分别从若5为底边长,12为腰长与若12为底边长,5为腰长去分析求解即可求得答案.【解答】解:若5为底边长,12为腰长,∵12+5>12,∴能组成三角形,∴此时它的周长是:12+12+5=29;若12为底边长,5为腰长,∵5+5<12,∴不能组成三角形,故舍去.∴它的周长是29.故选B.3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.4.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD 的周长=AB+BC,代入数据进行计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.6.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.7.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.8.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【考点】轴对称的性质.【分析】根据轴对称的性质,结合等边三角形的判定求解.【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【考点】角平分线的性质.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.二、填空题11.如图,是从镜中看到的一串数字,这串数字应为810076 .【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11 .【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.13.如图,若∠1=∠2,加上一个条件∠A=∠B ,则有△AOC≌△BOC.【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,如∠A=∠B,或者OA=OB等.【解答】解:∠A=∠B,理由是:在△AOC和△BOC中,,∴△AOC≌△BOC(AAS).故答案为:∠A=∠B.14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= 69 °.【考点】等腰三角形的性质.【分析】由题意,在△ABC中,AB=AD=DC,∠BAD=32°,根据等腰三角形的性质可以求出底角,再根据三角形内角与外角的关系即可求出内角∠CAD,再相加即可求出∠BAC的度数.【解答】解:在△ABC中,AB=AD=DC,在三角形ABD中,∵AB=AD,∴∠B=∠ADB=×=74°,在三角形ADC中,又∵AD=DC,∴∠CAD=∠ADB=74°×=37°.∴∠BAC=32°+37°=69°.故答案为:69.15.如图,△ABC中,∠C=90°,AC=BC=a,AB=b,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,则△DEB的周长为 b .(用a、b代数式表示)【考点】角平分线的性质;等腰直角三角形.【分析】由题目的已知条件应用AAS易证△CAD≌△EAD.得到DE=CD,于是BD+DE=BC=AC=AE,则周长可利用对应边相等代换求解.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴∠CAD=∠BAD,∠C=∠AED.在△CAD和△EAD中,,∴△CAD≌△EAD(AAS),∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长为DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=AB=b.故答案为:b.16.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为60或120 °.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.17.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入 1 号球袋.【考点】生活中的轴对称现象.【分析】由已知条件,按照反射的原理画图即可得出结论.【解答】解:如图,该球最后将落入1号球袋.18.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有 4 种.【考点】利用轴对称设计图案.【分析】因为中间4个小正方形组成一个大的正方形,正方形有四条对称轴,试着利用这四条对称轴添加图形得出答案即可.【解答】解:如图所示.这样的添法共有4种.故答案为:4.三、解答题19.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD 的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.20.要在公路MN上修一个车站P,使得P与A,B两个地方的距离和最小,请在图中画出P 的位置.【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】作出A点关于MN的对称点A′,再连接A′B,与MN交于一点,就是P点所在位置.【解答】解:如图所示:,点P即为所求.21.如图所示,在△AFD和△BEC中,点A、E、F、C在同一条直线上,有下面四个论断:(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC,请你从这四个条件中选出三个作为已知条件(3个条件都用上),另一个作为结论,组成一个真命题,并给予证明.题设:(1)(2)(4);结论:(3).(均填写序号)证明:【考点】命题与定理.【分析】选择①②④得到③,组成命题为如果AD=CB,AE=CF,AD∥BC,那么∠D=∠B;利用“SAS”证明△ADF≌△CBE,然后根据相似的性质得到∠D=∠B.【解答】解:题设:(1)(2)(4);结论:(3).证明如下:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=EF+CF,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B.故答案为:(1)(2)(4);(3).22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.【考点】等腰三角形的判定与性质.【分析】①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【解答】解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)23.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.(2)根据三角形内角和定理和角平分线的性质即可求得.【解答】解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.(2)∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠ABC+∠ACB=65°,∵∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=65°,∴∠BPC=180°﹣65°=115°.24.如图,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得使∠ADB=∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质得出∠BAC=60°,AB=AC,求出∠BAD=∠ACE,根据AAS推出△ABD≌△CAE,根据全等三角形的性质得出CE=AD,AE=BD,即可得出答案.【解答】DE=CE﹣BD,证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∴∠BAD+∠CAE=60°,∵∠AEC=120°,∴∠ACE+∠CAE=60°,∴∠BAD=∠ACE,在△ABD和△CAE中∴△ABD≌△CAE(AAS),∴CE=AD,AE=BD,∵DE=AD﹣AE,∴DE=CE﹣BD.25.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5 cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.26.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB ≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】解:(1)①CF⊥BD,CF=BD …故答案为:垂直、相等.②成立,理由如下:…∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD …(2)当∠ACB=45°时可得CF⊥BC,理由如下:…过点A作AC的垂线与CB所在直线交于G …则∵∠ACB=45°∴AG=AC,∠AGC=∠ACG=45°∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS)…∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC …21。