自控实验5--采样控制系统分析
- 格式:doc
- 大小:115.50 KB
- 文档页数:6
自动控制原理实验报告实验名称:采样系统分析班级:自动化级班姓名:一、实验目的1.了解采样开关,零阶保持器的原理及过程;2.学会环采样系统特性分析;3.掌握学习用MA TLAB仿真软件实现采样系统分析方法。
二、实验设备及仪器1.模拟实验箱; 2.低频信号发生器; 3.虚拟仪器(低频示波器); 4.计算机;5.MA TLABL 仿真软件。
三、实验内容一、对低频正弦信号进行采样(采样频率应为原信号的两倍以上),观察其输出波形,再加入零阶保持器,观察其输出波形。
仿真电路图如下:其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/sT S =0.03s ,即S ω=2π×3100≈209.4 rad/s> 2c ω 输出波形图如下:可见此时输入波形图并没有得到完全复现。
T S =0.3s ,即S ω=2π×310≈20.94 rad/s<2c ω 输入输出波形图如下:可见此时输出波形图完全与输入的不一样。
显然是由于不满足香农定理m ax 2ωω≥S ,由下图可以看出零阶保持器可以将每次瞬间的值保持到下一次采样瞬间。
实验波形如下:加入采样开关后的波形:二、设计一个二阶闭环连续系统,分别观察加入采样开关前后的阶跃响应,进行分析。
仿真电路图如下:令K=20,T=0.03时,输出波形如下:有采样器时输出的曲线已经不稳定了。
T=0.3时,输出波形如下:有采样器时输出的曲线极不稳定。
实验波形如下:加入采样开关后的波形:三、改变采样开关在系统内的位置,(输入端,输出端),重复上述内容。
仿真电路图如下:K=2 T=0.03输出波形如下:四、在二阶闭环采样系统输出端加入零阶保持器,重复上述内容仿真电路图如下:K=2 ;T=0.03.输出波形如下:实验波形图如下:五、实验总结一、采样定理即香农采样定理,其证明要使被采样后的离散信号X*(t)能不失真地恢复原有的连续信号X(t),其充分条件为:m ax 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。
东南大学自动控制实验室实验报告课程名称:热工过程自动控制原理实验名称:采样控制系统的分析院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别:同组人员:实验时间:2015.12.15 评定成绩:审阅教师:实验八 采样控制系统的分析一、实验目的1. 熟悉并掌握Simulink 的使用;2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法;3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响;二、实验原理1. 采样定理图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。
图2-1 连续信号的采样与恢复香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:max 2ωω≥S式中S ω为采样的角频率,max ω为连续信号的最高角频率。
由于T S πω2=,因而式可为 m axωπ≤T T 为采样周期。
2. 采样控制系统性能的研究图2-2为二阶采样控制系统的方块图。
图2-2采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。
由图2-2所示系统的开环脉冲传递函数为:]25.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----= ))(1()]21()12[(5.122222T T T T e Z Z Te e Z e T --------++-= 闭环脉冲传递函数为: )]21(]12[5.12)1()]21(12[5.12)()(222222222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5.12)5.1125()5.115.1325()]21(12[5.12222222++-+-+--++-=-----T e Z e T Z Te e Z e T T T T T T )(根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。
成绩北京航空航天大学自动控制原理实验报告学院自动化学院专业方向飞行器控制班级110321学号11031022学生姓名周之涵实验五 采样系统研究一、实验目的1.了解信号的采样与恢复的原理及其过程,并验证香农定理。
2.掌握采样系统的瞬态响应与极点分布的对应关系。
3.掌握最少拍采样系统的设计步骤。
二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。
2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。
3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。
其传递函数:se Ts--1 4. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。
5. 最小拍无差系统:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。
对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。
从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。
三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。
被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:T T Ts e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()(系统开环脉冲传递函数为:T T w e z e Z G z D z G ----===)1(4)()()( 系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。
北航自控原理实验五采样系统研究
采样系统是指从被测系统采集信号、将其转换为数字信号、利用数字
信号进行信号处理和反馈等。
本次实验要求设计和实现一个采样系统,用
以采集模拟信号,进行数字采样、处理,最后发出控制信号,实施反馈控制。
本次实验使用的采样系统是由工控机、采样卡、示波器、模拟信号源、四路输出模拟量信号和调试软件组成。
工控机用于数据采集与处理,采样
卡用于连接工控机,完成对模拟电压的采样与数据处理;示波器可以用来
监视实验过程中模拟电压和调制调整量的变化;模拟信号源模拟和产生各
种信号,提供给采样系统进行实验;四路输出模拟量信号模块可以输出四
种不同的信号,用于实验测试。
实验步骤:
一、查看实验目的,了解实验中用到的仪器状态
二、设置采样条件,检查模拟源输出的信号
三、用示波器检查采样系统和信号源的连接情况
四、使用调试软件,进行采样,编写采样程序
五、实验验证,随机改变被控对象,检查采样系统反馈控制的效果
六、实验报告,书写实验详细过程,以及采样系统的参数和调试软件的运行结果。
自动控制实验采样控制系统分析一.实验目的1.了解判断采样控制系统稳定性的充要条件。
2.了解采样周期T对系统的稳定性的影响及临界值的计算。
3 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。
三、实验内容及步骤1.闭环采样系统构成电路如图3-5-1所示。
了解采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。
2.改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入实验报告。
图3-5-1 闭环采样系统构成电路闭环采样系统实验构成电路如图3-5-1所示,其中被控对象的各环节参数:积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。
实验步骤:注:‘S ST’不能用‘短路套’短接!(1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。
(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。
调节“设定电位器1”控制相应的输出频率。
(2)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。
阶跃信号输出(B1-2的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。
(3)构造模拟电路:按图3-5-1安置短路套及测孔联线,表如下。
(a)安置短路套(b)测孔联线(4)运行、观察、记录:①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。
东南大学自动控制实验室实验报告课程名称:热工过程自动控制原理实验名称:采样控制系统的分析院(系):能源与环境学院专业:热能动力姓名:范永学学号: 03013409 实验室:实验组别:同组人员:实验时间: 2015.12.15 评定成绩:审阅教师:实验八采样控制系统的分析一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法;3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响;二、实验原理1. 采样定理图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。
图2-1 连续信号的采样与恢复香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:max 2ωω≥S式中S ω为采样的角频率,max ω为连续信号的最高角频率。
由于T S πω2=,因而式可为 m axωπ≤T T 为采样周期。
2. 采样控制系统性能的研究图2-2为二阶采样控制系统的方块图。
图2-2采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。
由图2-2所示系统的开环脉冲传递函数为: ]25.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----= ))(1()]21()12[(5.122222T T T T e Z Z Te e Z e T --------++-=闭环脉冲传递函数为:)]21(]12[5.12)1()]21(12[5.12)()(222222222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5.12)5.1125()5.115.1325()]21(12[5.12222222++-+-+--++-=-----T e Z e T Z Te e Z e T T T T T T )(根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。
北京XX大学
实验报告
课程(项目)名称:采样控制系统分析学院:专业:
姓名:学号:
指导教师:成绩:
2013年12 月8 日
一.实验目的
1. 掌握判断采样控制系统稳定性的充要条件。
2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。
3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。
二.实验内容及步骤
1.闭环采样系统构成电路如图5-1所示。
掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线,填入表中。
2.改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。
[a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节参数:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。
图5-1 闭环采样系统构成电路
实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接!
1.用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。
(D1)单元选择
“方波”,(B5)“方波输出”孔输出方波。
调节“设定电位器1”控制相应的输出频
率。
(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):
B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。
阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。
(3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线
(4)运行、观察、记录:
① 运行LABACT 程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
② 调节 “设定电位器1”,D1单元显示方波频率,将采样周期T (B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和 90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V 阶跃),使用虚拟示波器CH1观察A6单元输出点OUT (C )的波形。
观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。
[b].,两个闭环采样系统的被控对象参数分别为:
(1)闭环采样系统实验构成电路如图5-1所示。
积分环节(A3单元)的积分时间常数Ti=R 2*C 2=0.2S ,
惯性环节(A5单元)的惯性时间常数 T=R 1*C 1=0.5S ,增益K=R1/R3=5。
(2)改变图5-1所示闭环采样系统积分环节(A3单元),惯性环节(A5单元)参数构成实验系统:
积分环节(A3单元)的积分时间常数Ti=R 2*C 2=0.1S ,
惯性环节(A5单元)的惯性时间常数 T=R 1*C 1=0.2S ,增益K=R1/R3=2。
计算和测量两组系统的临界稳定采样周期T ,填入表5-2。
表5-2
三.数据处理(现象分析)采样周期T=15ms
采样周期T=30ms
采样周期T=90ms
积分时间常数0.1
积分时间常数0.2。