第三章-材料电化学
- 格式:ppt
- 大小:148.50 KB
- 文档页数:8
第三章 材料的性能 1.用固体能带理论说明什么是导体,半导体,绝缘体? 答:固体的导电性能由其能带结构决定。
对一价金属(如Na ),价带是未满带,故能导电。
对二价金属(如Mg ),价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电。
绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。
禁带宽度较小时(0.1—3eV )呈现半导体性质,禁带宽度较大(>5eV )则为绝缘体。
答案或者是: 满带:充满电子的能带 空带:部分充满或全空的能带 价带:价电子填充的能带 禁带:导带及满带之间的空隙 (其中,空带和价带是 导带) 导体:价带未满,或价带全满但禁带宽度为零,此时,电子能够很容易的实现价带与导带之间的跃迁。
半导体:价带全满,禁带宽度在0.1-3eV 之间,此时,电子可以通过吸收能量而实现跃迁。
绝缘体:价带全满,禁带宽度大于5eV ,此时,电子很难通过吸收能量而实现跃迁 2、 有一根长为5 m ,直径为3mm 的铝线,已知铝的弹性模量为70Gpa ,求在200N 的拉力作用下,此线的总长度。
= 5.002 m 3.试解释为何铝材不易生锈,而铁则较易生锈? 答:锈蚀机理不同,前者为化学腐蚀,后者为电化学腐蚀铝是一种较活泼的金属,但因为在空气中能很快生成致密的氧化铝薄膜,所以在空气中是非常稳定的。
铁与空气中的水蒸气,酸性气体接触,与自身的氧化物之间形成了腐蚀电池,遭到了电化学腐蚀,所以容易生锈。
4.为什么碱式滴定管不采用玻璃活塞?答:因为普通的无机玻璃主要含二氧化硅,二氧化硅是一种酸性的氧化物,在碱液中将会被溶解或侵蚀,其反应为:SiO2+2NaOH →Na2SiO3+H2O5.何种结构的材料具有高硬度?如何提高金属材料的硬度?答:由共价键结合的材料具有很高的硬度,这是因为共价键的强度较高。
无机非金属材料由离子键和共价键构成,这两种键的强度均较高,所以一般都有较高硬度,特别是当含有价态较高而半径较小的离子时,所形成的离子键强度较0/F A σ= (H E σε=00()/l l lε=-()/l l l ε=-高(因静电引力较大),故材料的硬度较高。
第3章 电化学极化 (电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒子自溶液深处向电极表面的扩散——液相传质步骤。
2) 反应粒子在界面得失电子的过程——电化学步骤。
3) 产物生成新相,或向溶液深处扩散。
当有外电流通过电极时,ϕ将偏离平衡值,我们就说此时发生了极化。
如果传质过程是最慢步骤,则ϕ的偏离是由浓度极化引起的(此时0i s i C C ≠,e ϕ的计算严格说是用s i C 。
无浓度极化时0i s i C C =,ϕ的改变是由s i C 的变化引起)。
这时电化学步骤是快步骤,平衡状态基本没有破坏。
因此反映这一步骤平衡特征的Nernst 方程仍能使用,但须用ϕ代e ϕ,s i C 代0i C ,这属于下一章的研究内容。
如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时ϕ偏离e ϕ是由电化学极化引起的,也就是本章研究的内容。
实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),ϕ随之变化。
由此引起的ϕ偏离就是电化学极化,这时Nernst 方程显然不适用了,这时ϕ的改变将直接以所谓“动力学方式”来影响反应速度。
3.1 电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化—还原反应(一个电极上既有氧化过程,又有还原过程)。
若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,)(nFv i v i =∝[故电化学中总是用i 表示v ,又i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i 表示v 。
i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。
既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,ϕ偏离了平衡值,偏离的程度用η表示,极化的大小与反应速度的大小有关,这里就来研究i ~ϕ二者间的关系。
第3章电化学极化(电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:0°0 s ze R s R01)反应粒子自溶液深处向电极表面的扩散一一液相传质步骤。
2)反应粒子在界面得失电子的过程一一电化学步骤。
3)产物生成新相,或向溶液深处扩散。
当有外电流通过电极时,将偏离平衡值,我们就说此时发生了极化。
如果传质过程是最慢步骤,贝y的偏离是由浓度极化引起的(此时C j s C0,e的计算严格说是用C i s。
无浓度极化时C i s C0,的改变是由C i s的变化引起)。
这时电化学步骤是快步骤,平衡状态基本没有破坏。
因此反映这一步骤平衡特征的Nernst方程仍能使用,但须用代e , C i S代C i0,这属于下一章的研究内容。
如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时偏离e是由电化学极化引起的,也就是本章研究的内容。
实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),随之变化。
由此引起的偏离就是电化学极化,这时Nernst方程显然不适用了,这时的改变将直接以所谓动力学方式”来影响反应速度。
3.1电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化一还原反应(一个电极上既有氧化过程,又有还原过程)。
若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,i v (i nFv)[故电化学中总是用i表示v,又i为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i表示v。
i的单位为A/cm2, zF的单位为C/mol , V的单位为mol/ (cm2.s)]。
既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,偏离了平衡值,偏离的程度用表示,极化的大小与反应速度的大小有关,这里就来研究~ i二者间的关系。
一个反应进行速度的大小,从本质上说,取决于反应粒子变成产物粒子所需越过的活化能垒的高度:能垒低,反应易进行,速度就快,反之则慢。
电化学第3章电化学极化讲解电化学极化是指在电池或电化学反应中,由于电流通过电解质溶液或固体电解质内部所引起的电势变化和电化学反应过程,使得电极表面的电位波动而导致的极化现象。
这种现象会对电化学反应的速度和效果产生影响,并且还会对电池的使用寿命产生影响。
因此,研究电化学极化对于电化学研究和应用具有十分重要的意义。
电化学极化产生的原因主要有三种:电阻极化、化学极化和双极化。
其中,电阻极化是由于电解质的电阻对电流的阻碍所导致的电极电位下降;化学极化是因为电化学反应产生的中间物质在电极表面积累,妨碍了电荷的传输而导致的电极电位变化;而双极化则是化学极化和电阻极化的综合效果。
这三种极化加起来就是总极化。
电阻极化是电解质电导率降低或电池电解液中溶质浓度增加所引起的。
电解质溶液中的电离度影响电导率,溶液浓度越大,电离度越高,导电性也越高。
但是在一定条件下,由于电解质的抵抗和电荷的平衡,电离度会下降,导致电导率降低。
在电化学反应中,当电流通过电解液时,会引起内部电场的变化,从而引起电位的变化,使得电极表面电位下降,产生电阻极化。
电阻极化的产生会使得电化学反应的速率降低,因此需要采取措施来消除电阻极化。
解决电阻极化的方法包括增加电极表面积、缩短电解质厚度等。
化学极化是指在电化学反应过程中,由于反应产物在电极表面积累,导致电位的变化。
这种极化既可以是消极的,也可以是积极的。
消极的化学极化通常是由于电极表面积累的反应产物造成了反应的中止,而积极的化学极化则会催化反应,促使反应速率的提高。
如果化学极化过于严重,会导致电极表面被覆盖,阻碍电流的传输,从而造成电位的下降。
为了避免化学极化的影响,可以采用刷新电极表面、增加电极表面积、调整电解质中的反应物浓度等方法。
双极化是指电阻极化和化学极化同时存在,两者综合起来导致电位的变化。
双极化是一种复杂的极化,它的产生需要考虑多种因素,如电荷的传输速度、电解质电导率、化学反应等。
为了消除双极化,可以采用加速电荷传输速度、采用高电导率的电解质、优化反应条件等方法。