高二数学 7.6圆的方程(一)
- 格式:ppt
- 大小:1.31 MB
- 文档页数:12
7.6 圆的方程课时安排3课时从容说课圆是同学们比较熟悉的曲线.本节将介绍圆的标准方程、一般方程和参数方程,其中标准方程和一般方程又统称为圆的普通方程.三种方程各有特点,且可互化.所以通过对本节的学习,应熟练掌握圆的三种方程,并能相互灵活转化.在初中几何课中己学习过圆的性质,这里只是用解析法研究它的方程与其他图形的位置关系及一些应用.●课题§7.6.1 圆的方程(一)●教学目标(一)教学知识点圆的标准方程.(二)能力训练要求1.掌握圆的标准方程;2.能根据圆心坐标、半径熟练地写出圆的标准方程;3.从圆的标准方程熟练地求出圆心和半径.(三)德育渗透目标1.渗透数形结合思想;2.培养学生的思维素质;3.提高学生的思维能力.●教学重点已知圆的圆心为(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2.特别地,a=b=0时,它表示圆心在原点,半径为r的圆:x2+y2=r2.●教学难点根据条件,利用待定系数法确定圆的三个参数a、b、r,从而求出圆的标准方程.●教学方法引导法引导学生按照求曲线方程的一般步骤根据条件归纳出圆的标准方程.●教具准备投影片两张第一张:§7.6.1 A第二张:§7.6.1 B例:如图所示是圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m需用一个支柱支撑,求支柱A2P2的高度.(精确到0.01 m).●教学过程Ⅰ.课题导入我们知道,平面内与定点距离等于定长的点的集合(轨迹)是圆.定点就是圆心,定长就是半径.那么,圆是否也可用一个方程来表示呢?Ⅱ.讲授新课(打出投影片§7.7.1 A)请同学们试着来求一下圆心是C (a ,b ),半径是r 的圆的方程. [师](引导学生分析):根据圆的定义,不难得出圆C 就是到圆心C (a ,b )的距离等于定长r 的所有点所组成的集合.[师]这个集合是怎样的一个集合呢?是否可用数学语言把它描述出来?[生]圆C 就是集合P ={M ||MC |=r }.[师]这样的话,不妨设M (x ,y )是圆上任意一点,由两点间的距离公式,点M 适合的条件可表示为……[生](回答):r b y a x =-+-22)()(.[师]整理此式,可得到……[生](x -a )2+(y -b )2=r 2.[师]这个方程就是圆心为C (a ,b ),半径为r 的圆的方程,我们把它叫做圆的标准方程.如果圆心在坐标原点,这时a =0,b =0,则圆的方程是……[生]x 2+y 2=r 2.[师]看来,只要已知圆心坐标和半径,便可写出圆的标准方程.下面,我们看一些例子.[例1]求以C (1,3)为圆心,并且和直线3x -4y -7=0相切的圆的方程.分析:要想写出圆的方程,需知圆心坐标和半径,圆心为C (1,3),而半径需根据已知条件求得,因为圆C 和直线3x -4y -7=0相切,所以半径r 等于圆心C 到这条直线的距离,而后可写出圆C 的方程.解:已知圆心是C (1,3),∵圆C 和直线3x -4y -7=0相切,∴半径r 等于圆心C 到这条直线的距离.由点到直线距离公式,可得r =516)4(3734132=-+-⨯-⨯. ∴所求的圆的方程是(x -1)2+(y -3)2=25256. [例2]已知圆的方程是x 2+y 2=r 2,求经过圆上一点M (x 0,y 0)的切线的方程.分析:欲求过M 的直线方程,只要求出此直线斜率即可.解:设切线的斜率为k ,半径OM 的斜率为k 1,∵圆的切线垂直于过切点的半径,∴k =-11k . ∵k 1=00x y .∴k =-00y x .∴经过点M 的切线方程是:y -y 0=-00y x (x -x 0),整理得x 0x +y 0y =x 02+y 02.又∵点M (x 0,y 0)在圆上,∴x 02+y 02=r 2.∴所求切线方程是x 0x +y 0y =r 2.当点M 在坐标轴上时,切线方程为: x =x 0或y =y 0.可看出上面方程也同样适用.(打出投影片§7.7.1 B)[例3]这是一实际应用例子.分析:首先我们应建立恰当的坐标系,将这一问题转化为数学问题.解:建立坐标系,圆心在y 轴上,设圆心的坐标是(0,b ),圆的半径是r ,那么圆的方程是x 2+(y -b )2=r 2.∵P 、B 都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解.∴⎩⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得:b =-10.5,r 2=14.52∴圆方程为:x 2+(y +10.5)2=14.52.把点P 2的横坐标x =-2代入这个圆方程,得(-2)2+(y +10.5)2=14.52,∵P 2的纵坐标y >0∴y +10.5=22)2(5.14--即y =22)2(5.14---10.5≈14.36-10.5=3.86 (m)答:支柱A 2P 2的高度约为3.86 m.Ⅲ.课堂练习[生]课本P 77,练习1,2,3,4.1.写出下列各圆的方程:(1)圆心在原点,半径是3;解:x 2+y 2=9.(2)圆心在点C (3,4),半径是5;解:(x -3)2+(y -4)=5.(3)经过点P (5,1),圆心在点C (8,-3)解:r =|PC |=5)31()85(22=++-圆方程为:(x -8)2+(y +3)2=252.已知一个圆的圆心在原点,并与直线4x +3y -70=0相切,求圆的方程.解:∵圆的半径r 为原点到直线4x +3y -70=0的距离. ∴r =14347022=+.∴圆方程为:x 2+y 2=196.3.写出过圆x 2+y 2=10上一点M (2,6)的切线的方程. 解:利用例2结论可得:切线方程为2x +6y =10.4.已知圆的方程是x 2+y 2=1,求:(1)斜率等于1的切线的方程.(2)在y 轴上截距是2的切线的方程.解:(1)设切点坐标为M (x 0,y 0)则k OM =-1=0x y又∵x 02+y 02=1 ∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==222222220000y x y x 或∴切线方程为y +22=x -22或y -22=x +22即:y =x ±2.(2)设切点M (x 0,y 0),切线与y 轴交点B (0,2)则:k OM ·k BM =-1 即00002x y x y -⋅=-1x 02+y 02-2y 0=0又∵x 02+y 02=1(x -a ) 2+(y -b ) 2=r 2 [例3] ∴或⎪⎪⎩⎪⎪⎨⎧==222200x y ⎪⎪⎩⎪⎪⎨⎧-==222200x y ∴切线方程为y =±x +2.Ⅳ.课时小结 通过本节学习,首先要掌握根据圆心坐标和圆的半径可写出圆的标准方程.其次,根据圆的标准方程可求得圆心坐标和半径.另外,还要会变通一些条件,从而求得圆的半径或圆心坐标,以便写出圆的标准方程.还需了解的是过圆x 2+y 2=r 2上一点(x 0,y 0)的切线方程为:x 0x +y 0y =r 2.最后,还要注意结合初中所学的平面几何知识和前面所学的直线方程的有关知识解决一些综合性问题.Ⅴ.课后作业(一)课本P 81习题7.6 1,2,3,4.(二)1.预习内容:课本P 77~792.预习提纲:(1)圆的一般方程有何特点?(2)圆的标准方程和圆的一般方程如何互化?●板书设计§7.6.1 圆的方程(一)一、圆的标准方程[例1][例2]。
§7.6 圆的参数方程一.教学内容分析教科书根据三角函数的定义,推导出了圆心在原点、半径为r 的圆的参数方程,然后直接给出圆心为1(,)O a b ,半径为r 的圆的参数方程cos sin x a r y b r θθθ=+⎧⎨=+⎩(为参数). 在具体教学过程中,对如何根据圆的平移得到后一个参数方程,可作适当的介绍.在介绍了圆的参数方程以后,教科书简单介绍了一般的参数方程和普通方程的概念.在此,对参数方程的教学要求要注意控制,不要让学生系统地学习怎样求曲线的参数方程,而只是为了在某些问题的叙述中,能使学生区分曲线的参数方程和普通方程这两种不同形式,初步了解参数方程和普通方程的意义,能够把一些简单曲线(如圆和直线等)的参数方程化为普通方程. 在曲线方程的某些问题中,借助于参数方程,能使它们的解决变得容易.因为参数方程把曲线上点的坐标通过参数直接表示出来,比较清楚地指出了曲线上点的坐标的特点.教科书中的例6,就是把曲线的普通方程转化为参数方程后加以解决的.许多问题可以作这样的转化,当然有时也把给定参数方程的问题转化为普通方程来解决.教科书中的例6也可以直接用普通方程来解决.二.教学目标概览1.理解圆心在原点,半径为r 的圆的参数方程,能较熟练地求出圆心在原点,半径为r 的圆的参数方程.2.明确参数θ的意义,能说明参数θ与圆上一点坐标变量,x y 之间的联系.3.理解圆心不在原点的圆的参数方程,能根据圆心坐标和半径熟练地求出圆的参数方程.4.了解一般曲线的参数方程和普通方程的意义.5.能将圆的参数方程与普通方程进行相互转化,会用圆的参数方程去解决一些简单的问题.6.通过本节的教学互动,进一步培养学生观察、猜想、验证、证明的能力,激发其学习数学的兴趣.三.聚焦重点难点重点是圆心在原点,半径为r 的圆的参数方程以及圆心不在原点的圆的参数方程.难点是圆的参数方程的应用和“观察、猜想、验证、证明”能力的培养.四.教与学辅助工具几何画板.五.教与学师生互动1.观察研究,发现规律.在几何画板平台上,画出如图7—36所示的圆.拖动点P ,使其在圆上运动,让学生观察,从圆O 与x 轴的正半轴的交点o P 开始,按逆时针方向旋转运动到点P 时oPOP θ∠=与P 的位置变 化之间的关系.得到结论:点P 的位置与旋转角θ有密切的关系. 当θ变化时,点P 在圆O 上的位置也随着变化.然后,教师引导学生根据三角函数的定义,找出点P 的横坐标x 与纵坐标y 关于θ的函数关系,从而得出圆心在原点,半径为r 的圆的参数方程是cos sin x r y r θθ=⎧⎨=⎩(1) 其中,θ是参数.请问,参数θ的几何意义是什么?(以x 轴正半轴为始边,以OP 为终边的角)2.创设情景,得出新知.在坐标系(几何画板平台上)中,先画出圆心在1(,)O a b ,半径为r 的圆.请问,能否给出它的参数方程?(若学生反映较困惑,则给出引导1)引导1:能否利用圆心在原点O ,半径为r 的圆的参数方程来解决这个问题?(这时,在坐标系中画出圆心在原点O ,半径为r的圆.)经教师的引导,学生通过观察两个圆可以得到如下结论:由于两个圆的大小一样,则可以把圆1O 看成是由圆O 按向量(,)v a b 平移而得到.于是,师生一起,利用向量平移的有关知识,求出圆心在1O ,半径为r 的圆的参数方程是cos sin x a r y b r θθθ=+⎧⎨=+⎩(为参数) (2) 3.对照比较,由特殊到一般.与圆的参数方程概念对照比较,引导学生得出一般的参数方程的概念:(由学生自己归纳) 一般地,在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即()()x f t y g t =⎧⎨=⎩(3) 并且对于t 的每一个允许值,由方程组(3)所确定的点(,)M x y 都在这条曲线上,那么方程组(3)就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.在这里,需向学生强调参数方程中的参数,可以是有物理的(如时间、位移、离心角)几何意义的参数(如斜率等). 也可以是没有明显意义的参变数,要注意参数的取值范围与x 、y 的取值范围的制约关系. 然后指出:相对于参数方程来说,以前所学习过的关于x 、y 的直角坐标方程,叫做曲线的普通方程.4.课堂练习181P 练习1,2要求:练习1,口答;练习2,学生上台板演. 之后由台下的学生来评价板演学生的作业情况,最后,教师点评总结.5. 例题讲解1例1(80P 例6)如图7—38,已知点P 是圆2216x y +=上的一个动点,点A 是x 轴上的定点,坐标为(12,0).当点P 在圆上运动时,线段PA 的中点M 的轨迹是什么?分析:由于点M 为点P 和点A 的中点,点A的坐标已知,点P 在已知圆上,故而点P 的坐标可以用参数θ来表示,所以,点M 的坐标便可以表示了,由此便可以求出线段PA 的中点M 的轨迹方程,进而知道其轨迹.解:设点M 的坐标是(,)x y .因而圆2216x y +=的参数方程为4cos ,4sin ,x y θθ=⎧⎨=⎩所以可设点P 的坐标为(4cos ,sin )θθ.由线段中点坐标公式得点M 得轨迹参数方程为62cos ,2sin .x y θθ=+⎧⎨=⎩所以,线段PA 的中点的轨迹是以点(6,0)为圆心、2为半径的圆.(说明:讲解此题时,可先让学生来试着解决,教师引导帮助.)想一想1:这个问题不用参数方程怎么解决?(由此得到求轨迹的一种重要方法:相关点法(或代入法))想一想2:若点M 不是线段PA 的中点,那么点M 的轨迹又是什么呢?想一想3:若点M 在线段PA 的延长线或反向延长线上,那么点M 的轨迹又是什么呢?6.课堂练习281P 练习3.请学生上讲台来板演.想一想1:你能否根据题意粗略的画出线段PQ 中点的轨迹?想一想2:如果在线段PQ 上任取一点M ,那么点M 的轨迹是什么?想一想3:如果在线段PQ 的延长线或反向延长线上任取一点M ,那么点M 的轨迹是什么? (说明:这样可以培养学生的观察、猜想、验证、证明的能力,激发学生学习的兴趣)7.例题讲解2例2 求函数sin 1()cos 2f θθθ-=-的最大值和最小值. 分析:sin 1()cos 2f θθθ-=-的形式相似于斜率2121y y k x x -=-的形式,因此可以把sin 1()cos 2f θθθ-=-看作是动点(cos ,sin )θθ与定点(2,1)连线的斜率.所求问题转化为求斜率()f θ的最大值和最小值.由于动点(cos ,sin )θθ在圆221x y +=上,因此可以把这个问题转化到图形上来处理.(利用几何画板作出圆221x y +=以及相关的点,这样,学生就很清楚地知道,当过定点(2,1)与动点(cos ,sin )θθ的直线与圆相切时,取得最值)解:根据题意,作出如图7—39所示的图. 所要求的函数sin 1()cos 2f θθθ-=-的最大值与最 小值,就转化为求动点P 与定点(2,1)连线的斜率的最大值与最小值.从图7—39可以得知,当直线PM 和圆相切时,分别得到其最大值与最小值.设直线PM 的斜率为k ,所以,其方程为:1(2)y k x -=-,即120kx y k -+-=.当直线PM 与圆相切时,1OP =,即1=,解得 0k =或43k =. 所以,min ()0f θ=,max 4()3f θ=. 点评:从例2可以看出,转化的思想方法与数形结合的思想方法对于学生的学习以及解题是相当有帮助的.8.课堂小结(可让学生总结)1. 圆的参数方程cos sin x a r y b r θθθ=+⎧⎨=+⎩(为参数),θ的几何意义. 2. 圆的参数方程的应用(例1,例2),以及在解题中转化的思想方法与数形结合的思想方法的应用.3.在学习中,应多注意观察、猜想、验证、证明,这样有助于培养自己对问题的观察力,对知识的洞察力.9.作业习题7.6 9,10.六.教学设计说明(1)本节教学内容是圆的参数方程及其应用.教学设计方案在继续遵循“以学生为本,发展学生个性”教学思想原则基础之上,着力研究结构性原则和适应性原则在教学中的应用.一要注意数学教学中不应把培养学生解决某一个(或类)具体的数学问题的能力当作能力培养的目标,而应着眼于培养学生良好的认知结构(知识结构与认识结构的综合体).二要注意数学教学适应学生的思维发展水平,并且要积极促进思维的发展,不能在“低水平上重复”.(2)重视学生的学习经历和经验,强调积极主动学习态度的形成,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程,促进学生素质的全面发展.(3)本课利用了几何画板平台进行辅助教学,提高了教学的效率,让“静”数学变成“动”数学,充分调动了学生的积极性,激发了学生学习的兴趣,让教学重点难点得到很好的解决.(4)通过例6与练习3,在几何画板平台上,引导学生观察,然后猜想、验证,最后证明,培养其思考问题、解决问题的能力和以科学家的方式考虑问题,这对于学生的整体发展和个性的发展是相当有益的.。
圆的方程知识集结知识元圆的标准方程知识讲解一:圆的标准方程,其中为圆心,为半径.注意:1.如果圆心在坐标原点,这时,圆的方程就是.有关图形特征与方程的转化:如:圆心在x轴上:b=0;圆与y轴相切时:;圆与x轴相切时:;与坐标轴相切时:;过原点:2.圆的标准方程圆心为,半径为,它显现了圆的几何特点.3.标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a、b、r这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.例题精讲圆的标准方程例1.'求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y―1=0切于点M(2,―1).'例2.'已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为,求圆C的标准方程.'例3.'已知一圆经过点A(2,―3)和B(―2,―5),且圆心C在直线l:x―2y―3=0上,求此圆的方程.'圆的一般方程知识讲解一:圆的一般方程当时,方程叫做圆的一般方程.为圆心,为半径.注意:由方程得(1)当时,方程只有实数解.它表示一个点.(2)当时,方程没有实数解,因而它不表示任何图形.(3)当时,可以看出方程表示以为圆心,为半径的圆.二:几种特殊位置的圆的方程条件方程形式标准方程一般方程圆心在原点过原点圆心在x轴上圆心在y轴上圆心在x轴上且过原点圆心在y轴上且过原点与x轴相切与y轴相切例题精讲圆的一般方程例1.若方程x 2+y 2+2λx +2λy +2λ2―λ+1=0表示圆,则λ的取值范围是()A .(1,+∞)B .C .D .R例2.方程所表示的曲线是()A .一个圆B .圆C .半个圆D .四分之一个圆例3.方程表示圆,则a 的取值范围是_________.A .或B .C .D .点与圆的的位置关系知识讲解点和圆的位置关系如果圆的标准方程为,圆心为,半径为,则有(1)若点在圆上(2)若点在圆外(3)若点在圆内例题精讲点与圆的的位置关系例1.点(a+1,a―1)在圆的内部,则a的取值范围是________.例2.点P(,10)与圆的位置关系是()A.在圆外B.在圆内C.在圆上D.与的值有关例3.过点C(―1,1)和点D(1,3)且圆心在x轴上的圆的方程是()A.x2+(y―2)2=10B.x2+(y+2)2=10C.(x+2)2+y2=10D.(x―2)2+y2=10例4.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.轨迹问题知识讲解一:用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是:(1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于或的方程组.(3)解方程组,求出或的值,并把它们代入所设的方程中去,就得到所求圆的方程.二:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用表示轨迹(曲线)上任一点的坐标;(2)列出关于的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点);(5)作答.例题精讲轨迹问题例1.点P(4,―2)与圆x2+y2=4上任一点连结的中点轨迹方程是()A.(x―2)2+(y+1)2=1B.(x―2)2+(y―1)2=4C.(x―4)2+(y―2)2=1D.(x―2)2+(y―1)2=1例2.'已知曲线C上任意一点到原点的距离与到A(3,―6)的距离之比均为.(1)求曲线C的方程.(2)设点P(1,―2),过点P作两条相异直线分别与曲线C相交于B,C两点,且直线PB 和直线PC的倾斜角互补,求证:直线BC的斜率为定值.'例3.'已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.'例4.'点P是圆上的任意一点,PC的中点是M,试求动点M的轨迹方程.'备选题库知识讲解本题库作为知识点“圆的方程”的题目补充.例题精讲备选题库已知圆C与直线x+y+3=0相切,直线mx+y+1=0始终平分圆C的面积,则圆C方程为()A.x2+y2-2y=2B.x2+y2+2y=2C.x2+y2-2y=1D.x2+y2+2y=1例2.圆x2+(y-2)2=9的半径是()A.3B.2C.9D.6例3.已知圆C与y轴相切于点(0,5),半径为5,则圆C的标准方程是()A.(x-5)2+(y-5)2=25B.(x+5)2+(y-5)2=25C.(x-5)2+(y-5)2=5或(x+5)2+(y-5)2=5D.(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=25例4.以A(-2,1),B(1,5)为半径两端点的圆的方程是()A.(x+2)2+(y-1)2=25B.(x-1)2+(y-5)2=25C.(x+2)2+(y-1)2=25或(x-1)2+(y-5)2=25D.(x+2)2+(y-1)2=5或(x-1)2+(y-5)2=5当堂练习单选题练习1.圆x2-6x+y2-16=0的周长是()A.25πB.10πC.8πD.5π若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为()A.2B.-1C.-2D.0练习3.已知点M(3,1)在圆C:x2+y2-2x+4y+2k+4=0外,则k的取值范围()A.B.C.k>-6D.练习4.已知x,y满足x2-4x-4+y2=0,则x2+y2的最大值为()A.12+8B.12-8C.12D.8练习5.方程x2+y2+mx-2y+3=0表示圆,则m的范围是()A.B.C.D.)练习6.圆心在(-1,0),半径为的圆的方程为()A.(x+1)2+y2=5B.(x+1)2+y2=25C.D.(x-1)2+y2=25填空题练习1.质点P的初始位置为P1(,1),它在以原点为圆心,半径为2的圆上逆时针旋转150°到_,点P2的坐标为________(用数字表示).达点P2,则质点P经过的弧长为__练习2.已知圆C经过点A(1,3)、B(2,2),并且直线m:3x-2y=0平分圆C.则圆C的方程为_________________.练习3.若圆x2+y2+Dx+Ey+F=0关于直线Dx+Ey+2F+8=0对称,则该圆的半径为___练习4.已知圆心在直线y=x上的圆与直线x+y=0及x+y+4=0都相切,则圆的方程为_________________.练习5.已知点A(2,0),B(0,4),O为坐标原点,则△AOB外接圆的标准方程是_________________.解答题练习1.'已知点A(4,1),B(-6,3),C(3,0).(1)求△ABC中BC边上的高所在直线的方程;(2)求过A,B,C三点的圆的方程.'练习2.'求过三点P(2,2),M(5,3),N(3,-1)的圆的方程.'练习3.'△ABC的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程.'练习4.'已知圆C过点A(3,1),B(5,3),圆心在直线y=x上.(1)求圆C的方程;(2)过圆O1:x2+(y+1)2=1上任一点P作圆C的两条切线,切点分别为Q,T,求四边形PQCT面积的取值范围.'。
高二数学圆的方程总结一、概述圆是数学中的基础几何图形之一,它具有许多重要的性质和特点。
圆的方程是描述圆的数学表达式,可以通过方程推导出圆的各种性质和关系。
本文将以高二数学的学习内容为基础,总结圆的方程及其相关知识。
二、圆的定义圆是由平面上到一个固定点的距离等于一个常数的所有点组成的集合。
这个固定点称为圆心,到圆心的距离称为半径。
圆的方程可以表示为:(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为半径。
三、圆的标准方程1. 中心在原点的圆的方程:x² + y² =r²。
此时,圆心坐标为(0, 0)。
2. 中心不在原点的圆的方程:(x-a)² + (y-b)² = r²。
此时,圆心坐标为(a, b)。
四、圆的一般方程当圆的方程不满足标准方程形式时,我们可以通过变换将其转化为一般方程。
一般方程的形式为:Ax² + Ay² + Bx + Cy + D = 0。
五、圆的性质1. 圆的半径相等:圆上任意两点的距离都等于半径的长度。
2. 圆的直径:通过圆心的两个点组成的线段称为直径,直径的长度等于半径的两倍。
3. 圆的弦:圆上任意两点组成的线段称为弦。
4. 圆的切线:与圆只有一个交点的直线称为切线,切线与半径垂直。
5. 圆与直线的位置关系:直线与圆相交、外切、内切或不相交。
6. 圆的面积:圆的面积公式为πr²,其中π是一个无理数,约等于3.14。
7. 圆的周长:圆的周长公式为2πr。
六、圆的方程的应用1. 圆的方程可以用于求解与圆相关的几何问题,如求圆与直线的交点坐标、判断点是否在圆内等。
2. 圆的方程在物理学、工程学等领域也有广泛应用,如计算圆形物体的面积、设计圆形的轮胎等。
七、总结圆的方程是描述圆的数学表达式,可以通过方程推导出圆的性质和关系。
本文简要总结了圆的方程的标准形式和一般形式,以及圆的性质和应用。
高中数学《圆的方程》教案作为一位默默奉献的教育工作者,常常会需要准备好教案,通过教案准备可以更好地根据具体情形对教学进程做适当的必要的调剂。
优秀的教案都具有一些什么特点呢?这里给大家分享一些关于高中数学圆的方程教案,方便大家学习。
高中数学《圆的方程》教案1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌控圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。
(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的知道;3、增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交换的意识,在体验数学美的进程中激发学生的学习爱好。
2、教学重点、难点(1)教学重点:圆的标准方程的求法及其运用。
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②挑选恰当的坐标系解决与圆有关的实际问题。
3、教学进程(一)创设情境(启发思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。
7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2。
7代入,得即在离隧道中心线2。
7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M合适的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)运用举例(巩固提高)I.直接运用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II.灵活运用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。