当前位置:文档之家› 气体的pVT性质

气体的pVT性质

气体的pVT性质
气体的pVT性质

第一章气体的pVT性质

1.1物质的体膨胀系数与等温压缩率的定义如下

试推出理想气体的,与压力、温度的关系。

解:根据理想气体方程

1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100 ?C,另一个球则维持0 ?C,忽略连接细管中气体体积,试求该容器内空气的压力。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

标准状态:

因此,

1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,

求两种气体混合后的压力。

(2)隔板抽取前后,H2及N2的摩尔体积是否相同?

(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?

解:(1)等温混合后

即在上述条件下混合,系统的压力认为。

(2)混合气体中某组分的摩尔体积怎样定义?

(3)根据分体积的定义

对于分压

1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。

设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为

因此

1.13 今有0 ?C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。实验值为。

解:用理想气体状态方程计算

气(附录七)

用van der Waals计算,查表得知,对于N

2

,用MatLab fzero函数求得该方程的解为

也可以用直接迭代法,,取初值

,迭代十次结果

1.16 25 ?C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ?C,使

部分水蒸气凝结为水。试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。已知25 ?C及10 ?C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。

解:该过程图示如下

设系统为理想气体混合物,

1.17 一密闭刚性容器中充满了空气,并有少量的水。但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。设容器中始终有水存在,且可忽略水的任何体积变化。300 K时水的饱和蒸气压为3.567 kPa。

解:将气相看作理想气体,在300 K时空气的分压为

由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为

由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压

第二章热力学第一定律

2.5 始态为25 ?C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。途经a先经绝热膨胀到 -28.47 ?C,100 kPa,步骤的功

;再恒容加热到压力200 kPa的末态,步骤的热。途径b为恒压加热过程。求途径b的及。

解:先确定系统的始、末

对于途径b,其功为

根据热力学第一定律

2.6 4 mol的某理想气体,温度升高20 C,求的值。

解:根据焓的定义

2.10 2 mol某理想气体,。由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。求整个过程的

解:过程图示如下

由于,则,对有理想气体和

只是温度的函数

该途径只涉及恒容和恒压过程,因此计算功是方便的

根据热力学第一定律

2.13 已知20 ?C液态乙醇(C

2H

5

OH,l)的体膨胀系数,等温压

缩率,密度,摩尔定压热容

。求20 ?C,液态乙醇的。

解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关

2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa

的大气相通,以维持容器内空气的压力恒定。今利用加热器件使器内的空气由0 ?C加热至20 ?C,问需供给容器内的空气多少热量。已知空气的

假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变

注:在上述问题中不能应用,虽然容器的体积恒定。这是因为,从

小孔中排出去的空气要对环境作功。所作功计算如下:

在温度T时,升高系统温度 d T,排出容器的空气的物质量为

所作功

这正等于用和所计算热量之差。

2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ?C,4 mol 的Ar(g)及150 ?C,2 mol的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。已知:Ar(g)和Cu(s)的摩尔定压热容分别为

及,且假设均不随温度而变。

解:图示如下

假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计

则该过程可看作恒容过程,因

假设气体可看作理想气体,

,则

(g)的摩尔

2.16 水煤气发生炉出口的水煤气的温度是1100 ?C,其中CO(g)和H

2

分数均为0.5。若每小时有300 kg的水煤气由1100 ?C冷却到100 ?C,并用所收回的热来加热水,是水温由25 ?C升高到75 ?C。求每小时生产热水的质量。

(g)的摩尔定压热容与温度的函数关系查本书附录,水的CO(g)和H

2

比定压热容。

(g)的物质量分别为

解:300 kg的水煤气中CO(g)和H

2

300 kg的水煤气由1100 ?C冷却到100 ?C所放热量

设生产热水的质量为m,则

2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数

,始态温度,压力。今该混合气体绝热反抗恒外压膨胀到平衡态。求末态温度及过程的。

解:过程图示如下

分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。因此,

单原子分子,双原子分子

由于对理想气体U和H均只是温度的函数,所

2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 ?C 的单原子理想气体A及5 mol,100 ?C的双原子理想气体B,两气体的压力均为100 kPa。活塞外的压力维持在100 kPa不变。今将容器内的隔板撤去,使两种气体混合达到平衡态。求末态的温度T及过程的。

解:过程图示如下

假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则

由于外压恒定,求功是方便的

由于汽缸为绝热,因此

2.20 在一带活塞的绝热容器中有一固定的绝热隔板。隔板靠活塞一侧为2 mol,0 ?C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 ?C的双原子理想气体B,其体积恒定。今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。

解:过程图示如下

显然,在过程中A为恒压,而B为恒容,因此

同上题,先求功

同样,由于汽缸绝热,根据热力学第一定律

2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。求末态温度T及整个过程的及

解:过程图示如下

要确定,只需对第二步应用绝热状态方程

,对双原子气体

因此

由于理想气体的U和H只是温度的函数,

整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆

2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

证明:根据理想气体绝热方程,

,因此

。因此绝热线在处的斜率为

恒温线在处的斜率为

。由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。两气体均为0 C,100 kPa。A气体内部有一体积和热容均可忽略的电热丝。现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。求:

(1)气体B的末态温度。

(2)气体B得到的功。

(3)气体A的末态温度。

(4)气体A从电热丝得到的热。

解:过程图示如下

由于加热缓慢,B可看作经历了一个绝热可逆过程,因此

功用热力学第一定律求解

气体A的末态温度可用理想气体状态方程直接求解,

将A与B的看作整体,W= 0,因此

物化第一章 气体的pVT性质-含答案

第一章 气体的pVT 性质——习题 一、填空题 1.温度为400K ,体积为2m 3的容器中装有2mol 的理想气体A 和8mol 的理想气体B ,则该混合气体中B 的分压力p B =( )KPa 。13.302 V RT n p /B B ==(8×8.314×400/2)Pa =13.302 kPa 或()[]B B A B B /y V RT n n py p +== (){}kPa 13.3020.8Pa 2/400314.828=???+= 2.在300K ,100KPa 下,某理想气体的密度ρ=80.8275×10-3kg ·m -3。则该气体的摩尔质 量M=( )。1-3m o l kg 10016.2??- ()()RT M V RT M m nRT pV //ρ=== ()Pa 10100/K 300K mol J 314.8m kg 10827.80/31-1-3-3-???????==p RT M ρ 1-3mol kg 10016.2??=- 3.恒温100°C 下,在一带有活塞的气缸中装有3.5mol 的水蒸气H 2O (g ),当缓慢地压缩到压力p=( )KPa 是才可能有水滴H 2O (l )出现。101.325 因为100℃时水的饱和蒸汽压为101.325kPa ,故当压缩至p=101.325kPa 时才会有水滴H 2O (l )出现。 4.恒温下的理想气体,其摩尔体积随压力的变化率T m p V ???? ???? =( )。2/-p RT 理想气体满足理想气体状态方程RT pV =m 所以 ()0/m m =+??V p V p T ,即()2m m ///p RT p V p V T -=-=?? 5,一定的范德华气体,在恒容条件下,其压力随温度的变化率()=??V T /p . ()nb V nR -/ 将范德华状态方程改写为如下形式: 2 2 V an nb V nRT p --=所以()()nb V nR T p V -=??// 6.理想气体的微观特征是:( )理想气体的分子间无作用力,分子本身不占有体积

理想气体的性质

第三章 理想气体的性质 一、目的及要求: 了解理解气体的特点及性质,掌握理想气体比热容、热力学能、焓,熵等量的计算方法。了解混合理想气体的性质及热力学参数的计算。二、内容: 3.1 理想气体的概念及其状态方程式 3.2 理想气体的比热、热力学能、焓及熵 3.3 理想气体的混合物 三、重点及难点: 3.1 熟练掌握并正确应用理想气体状态方程式。 正确理解理想气体比热容的概念;熟练掌握和正确应用定值比热容、平均比热容来计算 过程热量,以及计算理想气体热力学能、焓和熵的变化。四、主要外语词汇: ideal gas, real gas,the heat capacity, properties, Dalton’s law of partial pressure , 五、本章节采用多媒体课件 六、复习思考题及作业: 思考题: 1、何谓理想气体和实际气体?火电厂的工质水蒸气可视为理想气体吗? 2、气体常数和通用气体常数有何区别和联系? 3、气体常数Rg 与气体种类是否有关?与状态呢? 4、理想气体的cp -cv =,与气体状态关? 5、容器内盛有一定状态的理想气体,如将气体放出一部分后重新又达到新的平衡状态, 6、放气前后两个平衡状态之间可否表示为下列形式: (a) 112212p v p v T T = (b) 112212 p V p V T T = 作业: 3-3,3-4,3-6,3-9,3-10,3-14,3-18 第三章 理想气体的性质 §3-1 理想气体的概念

理想气体是一种实际不存在的假象气体,其两点假设为: ① 分子是些弹性的、不具体积的质点。 ②分子间相互没有作用力。 在这两点假设条件下,气体分子的运动规律极大的简化了,分子两次碰撞之间为直线运动,且弹性碰撞无动能损失。对此简化了的物理模型,不但可定性地分析气体某些热力现象,而且可定量的导出状态参数间存在的简单函数关系。那么,由哪些气体可看成是理想气体呢? 众所周知,高温、低压的气体密度小、比体积大,若大到分子本身体积远小于其活动空间,分子间平均距离远到作用力极其微弱的状态就很接近理想气体。因此,理想气体是气体压力趋近于零(0→p )、比体积趋近于无穷大(∞→v )时的极限状态。工程中常用的氧气、氮气、氢气、一氧化碳等及其混和空气、燃气、烟气等工质,在通常使用的温度、压力下都可作为理想气体处理,误差一般都在工程计算允许的精度范围之内。如空气在室温下、压力达10MPa 时,按理想气体状态方程计算的比体积误差在1%左右。不符合上述两点假设的气态物质称为实际气体。蒸汽动力装置中采用的工质水蒸气,制冷装置的工质氟里昂蒸汽、氨蒸汽等,这类物质的临界温度较高,蒸汽在通常的工作温度和压力下离液态不远,不能看作理想气体。通常,蒸汽的比体积较气体小得多,分子本身体积不容忽略,分子间的内聚力随距离减小急剧增大。因而,实际气体运动规律极其复杂,宏观上反映为状态参数的函数关系式复杂,热工计算种需要借助于计算机或利用为各种蒸汽专门编制的图或表。实际气体的性质将在第六章中讨论。而对于大气中含有的少量水蒸气,燃气和烟气中含有的水蒸气和二氧化碳等,因分子浓度低,分压力甚小,在这些混合物的温度不太低时仍可视作为理想气体。**注:当工质温度超过临界温度后,即使压力再高,工质也不存在液相。 对于理想气体而言,其热力学能u 和焓h 只是温度的函数,原因如下: 由于理想气体分子间不具作用力,因此不存在内位能,只存在取决于温度的内动能,因而与体积v 无关,u 只是温度T 的单值函数,即:u = u ( T )。又因为h = u + pv ,

物理化学习题答案第一章 气体的 pVT 性质

第一章气体的pVT性质 1.1物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100 ?C,另一个球则维持0 ?C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。 (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同?

(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干? 解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。 解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。设第 一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数 为,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为 , 因此 1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。实验值为。 解:用理想气体状态方程计算 用van der Waals计算,查表得知,对于N2气(附录七) ,用MatLab fzero函数求得该方程的解为 也可以用直接迭代法,,取初值 ,迭代十次结果

各种气体的性质总结

各种气体的性质总结 一:气体名称:氧气 反应方程式:2KClO3=(MnO2)=△=2KCl+3O2↑ 反应物状态:固固加热 水溶性:难溶 , 颜色:无色 ,气味:无味 收集方法:向上排空气法,排水法 排空气验满方法:带火星木条,复燃 可选用的干燥剂:浓H2SO4,无水CuSO4,碱石灰,无水CaCl2,P2O5 其他制取方法:2KMnO4=△=K2MnO4+MnO2+O2↑;2H2O2=(MnO2)=2H2O+O2↑ 注意事项:KClO3催化分解时试管中不能混有任何可燃物,否则引起爆炸。二:气体名称:氢气 反应方程式:Zn+H2SO4(稀)=ZnSO4+H2↑ 反应物状态:固液常温 水溶性:难溶, 颜色:无色,气味:无味 收集方法:向下排空气法,排水法 可选用的干燥剂:浓H2SO4,无水CuSO4,碱石灰,无水CaCl2,P2O5 其他制取方法:2Al+2NaOH+2H2O=2NaAlO2+3H2↑;CaH2+2H2O=Ca(OH)2+2H2↑注意事项:不能使用浓H2SO4和任何浓度的HNO3。点燃或加热前必须验纯三:三气体名称:氯气 反应方程式:MnO2+4HCl(浓)=△=MnCl2+Cl2↑+2H2O 反应物状态:固液加热, 水溶性:可溶(1:2) , 颜色:黄绿色, 气味:刺激性气味(有毒!) 收集方法:向上排空气法,排饱和食盐水法 排空气验满方法:观察颜色;湿润的淀粉-KI试纸,试纸变蓝 可选用的干燥剂:浓H2SO4,无水CuSO4,无水CaCl2,P2O5 其他制取方法:2KMnO4+16HCl=2MnCl2+2KCl+5Cl2+8H2O 注意事项:必须在通风橱中操作,尾气用碱吸收,以免污染大气。 四:气体名称:氮气 反应方程式:NaNO2(固体)+NH4Cl(饱和)=△=NaCl+N2↑+2H2O 反应物状态:固液加热, 水溶性:难溶, 颜色:无色, 气味:无味 收集方法:排水法,向下排空气法 排空气验满方法:燃着的木条,熄灭 可选用的干燥剂:浓H2SO4,无水CuSO4,碱石灰,无水CaCl2,P2O5五:气体五:名称:氯化氢 反应方程式:NaCl+H2SO4(浓)=△=NaHSO4+HCl↑

气体、液体和溶液的性质

第一章 气体、液体和溶液的性质 §1-1 气体的性质 本节的重点是三个定律: 1.道尔顿分压定律(Dalton’s law of partial pressures ) 2.阿码加分体积定律(Amagat’s law of partial volumes ) 3.格拉罕姆气体扩散定律(Graham’s law of diffusion ) 一、理想气体(Ideal Gases )――讨论气体性质时非常有用的概念 1.什么样的气体称为理想气体? 气体分子间的作用力很微弱,一般可以忽略; 气体分子本身所占的体积远小于气体的体积。 即气体分子之间作用力可以忽略,分子本身的大小可以忽略的气体,称为理想气体。 2.理想气体是一个抽象的概念,它实际上不存在,但此概念反映了实际气体在一定条件下的最一般的性质。 3.实际气体在什么情况下看作理想气体呢? 只有在温度高和压力无限低时,实际气体才接近于理想气体。因为在此条件下,分子间距离大大增加,平均来看作用力趋向于零,分子所占的体积也可以忽略。 二、理想气体定律(The Ideal Gas Law ) 1.由来 (1) Boyle’s law (1627-1691)British physicist and chemist - The pressure-volume relationship n 、T 不变 , V ∝ 1/ p or pV = constant (2) Charles’s law (1746-1823)French scientist 1787年发现-The temperature-volume relationship n 、p 不变 , V ∝ T or V /T = constant (3) Avogadro’s law (1778-1823)Italian physicist Avogadro’s hypothesis :Equal volumes of gases at the same temperature and pressure contain equal numbers of molecular. Avogadro’s law The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. T 、p 不变 , V ∝ n 2.理想气体方程式(The ideal-gas equation ) 由上三式得:V ∝ nT / p ,即pV ∝ nT ,引入比例常数R ,得:pV = nRT pV = nRT R---- 摩尔气体常量 在STP 下,p =101.325kPa, T =273.15K n =1.0 mol 时, V m =22.414L=22.414×10-3m 3 R =8.314 kPa ?L ?K -1?mol -1 nT pV R =K 15.2731.0mol m 1022.414Pa 1013253 3???=-1 1K mol J 314.8--??=

第一章 气体的pVT性质-含答案

一、填空题 1.温度为400K ,体积为2m 3的容器中装有2mol 的理想气体A 和8mol 的理想气体B ,则该混合气体中B 的分 压力p B =( )KPa 。13.302 2.在300K ,100KPa 下,某理想气体的密度ρ=80.8275×10-3kg ·m -3。则该气体的摩尔质量M=( )。 3.恒温100°C 下,在一带有活塞的气缸中装有3.5mol 的水蒸气H 2O (g ),当缓慢地压缩到压力p=( )KPa 是才可能有水滴H 2O (l )出现。 4.恒温下的理想气体,其摩尔体积随压力的变化率T m p V ???? ???? =( )。 5,一定的范德华气体,在恒容条件下,其压力随温度的变化率()=??V T /p . 6.理想气体的微观特征是:( ) 7. 在临界状态下,任何真实气体的宏观特征为:( ) 8. 在n,T 在一定的条件下,任何种类的气体当压力趋近于零时均满足:()=→pV p lim 0 ( ). 9.实际气体的压缩因子定义为Z=( )。当实际气体的Z>1时,说明该气体比理想气体( ) 三、问答题 理想气体模型的基本假设是什么?什么情况下真实气体和理想气体性质接近?增加压力真实气体就可以液化,这种说法对吗,为什么? 第二章 热力学第一定律――附答案 一、填空题 1. 理想气体向真空膨胀过程 , 下列变量 中等于零的有 : 。 2. 双原子理想气体经加热内能变化为 ,则其焓变为 。 3. 在以绝热箱中置一绝热隔板,将向分成两部分,分别装有温度,压力都不同的两种气体,将隔板抽走室气 体混合,若以气体为系统,则此过程 。 4. 绝热刚壁容器内发生CH 4+2O 2=CO 2+2H 2O 的燃烧反应,系统的 Q ___ 0 ; W ___ 0 ;?U ___ 0;?H ___ 0 5. 某循环过程 Q = 5 kJ, 则 ?U + 2W + 3 ?(pV) = __________. 6. 298K 时, S 的标准燃烧焓为-296.8 kJ ?mol -1, 298K 时反应的标准摩尔反应焓 ?r H m = ________ kJ ?mol -1 . 7. 已知 的 , 则 的 。 8. 某均相化学反应 在恒压,绝热非体积功为零的条件下进行,系统的温度由 升高到 则此 过程的 ;如果此反应是在恒温,恒压,不作非体积功的条件下进行,则 。 9. 25 ℃ 的液体苯在弹式量热计中完全燃烧 , 放热 则反应 的 。 10.系统的宏观性质可以分为( ),凡与系统物质的量成正比的物理量皆称为( )。 11.在300K 的常压下,2mol 的某固体物质完全升华过程的体积功W=( ) 12.某化学反应:A(l)+0.5B(g)-- C(g) 在500K 恒容条件下进行,反应进度为1mol 时放热10KJ,若反应在同样温度恒压条件下进行,反应进度为1mol 时放热( )。

中学化学常见气体性质归纳

中学化学常见气体性质归纳 1、有色气体:F2(淡黄绿色)、Cl2(黄绿色)、Br2(g)(红棕色)、I2(g)(紫红色)、NO2(红棕色)、O3(淡蓝色),其余均为无色气体。 2、有刺激性气味的气体:HF、HCl、HBr、HI、NH 3、SO2、NO2、F2、Cl2、Br2(g);有臭鸡蛋气味的气体:H2S。 3、极易溶于水能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。 4、易液化的气体:NH3、SO2、Cl2 。 5、有毒的气体:F2、HF、Cl2、H2S、SO2、CO、NO2、NO、Br2(g)。 6、在空气中易形成白雾的气体:NH3、HF、HCl、HBr、HI。 7、常温下不能共存的气体:H2S和SO2、H2S和Cl2、HI和Cl2、NH3和HCl、NO和O2、F2和H2。 8、其水溶液呈酸性的气体:HF、HCl、HBr、HI、H2S、SO2、CO2、NO2、Br2(g)。可使湿润的红色石蕊试纸变蓝的气体:NH3。 9、有漂白作用的气体:Cl2(有水时)和SO2,但两者同时使用时漂白效果减弱。检验Cl2常用Cl2能使湿润的紫色石蕊试纸先变红后褪色。 10、能使澄清石灰水变浑浊的气体:CO2和SO2,但通入过量气体时沉淀又消失。 11、在空气中可以燃烧的气体:H2、CO、CH4、C2H4、C2H2、H2S。在空气中燃烧火焰呈蓝色(或淡蓝色)的气体:H2S、H2、CO、CH4。 12、具有强氧化性的气体:F2、Cl2、Br2(g)、NO2、O2、O3;具有强或较强还原性的气体:H2S、H2、CO、NH3、HI、HBr、HCl、NO;SO2和N2既具有氧化性又具有还原性。 13、与水可反应的气体:Cl2、F2、NO2、Br2(g)、CO2、SO2、NH3;其中Cl2、NO2、Br2(g)与水的反应属于氧化还原反应(而且都是歧化反应),只有F2与水剧烈反应产生O2。 14、能使湿润的淀粉碘化钾试纸变蓝的气体:Cl2、NO2、Br2(g)、O3。 15、能使溴水和酸性高锰酸钾溶液褪色的气体:H2S、SO2、C2H4、C2H2。 16、可导致酸雨的主要气体:SO2; 导致光化学烟雾的主要气体:NO2等氮氧化物和烃类; 导致臭氧空洞的主要气体:氟氯烃(俗称氟利昂)和NO等氮氧化物; 导致温室效应的主要气体:CO2和CH4等烃; 能与血红蛋白结合导致人体缺氧的气体是:CO和NO。 17、可用作致冷剂或冷冻剂的气体:CO2、NH3、N2。 18、用作大棚植物气肥的气体:CO2。 19、被称做地球保护伞的气体:O3。 20、用做自来水消毒的气体:Cl2 物质的学名、俗名及化学式 (1) 生石灰、氧化钙:CaO (2)熟石灰(或消石灰):Ca(OH)2 (3)食盐:NaCl (4)干冰:CO2 (5)纯碱:Na2CO3 (6)烧碱(或苛性钠,火碱):NaOH (7)胆矾(蓝矾、硫酸铜晶体):CuSO4·5H2O (8) 明矾:KAl(SO4) 2·12H2O (9)CaCO3碳酸钙(石灰石、大理石) (10) NaHCO3碳酸氢钠(小苏打) (11)石碱(碳酸钠晶体、纯碱晶体):Na2CO3·10H2O (12)碱式碳酸铜(铜绿、孔雀石):

第一章气体、液体和溶液的性质

第一章气体、液体和溶液的性质Chapter 1The Behaviors of Gas、Liquid and Solution §1-1 气体的性质 The Properties of Gases 本节的重点是三个定律: 1.道尔顿分压定律(Dalton’s law of partial pressures) 2.阿码加分体积定律(Amagat’s law of partial volumes) 3.格拉罕姆气体扩散定律(Graham’s law o f diffusion) 一、理想气体(Ideal Gases)――讨论气体性质时非常有用的概念 1.什么样的气体称为理想气体? 气体分子间的作用力很微弱,一般可以忽略; 气体分子本身所占的体积远小于气体的体积。 即气体分子之间作用力可以忽略,分子本身的大小可以忽略的气体,称为理想气体。2.理想气体是一个抽象的概念,它实际上不存在,但此概念反映了实际气体在一定条件下的最一般的性质。 3.实际气体在什么情况下看作理想气体呢? 只有在温度高和压力无限低时,实际气体才接近于理想气体。因为在此条件下,分子间距离大大增加,平均来看作用力趋向于零,分子所占的体积也可以忽略。二、理想气体定律(The Ideal Gas Law) 1.由来 (1) Boyle’s law(1627-1691)British physicist and chemist - The pressure-volume relationship n、T不变,V∝ 1/ p or pV = constant (2) Charles’s law(1746-1823)French scientist 1787年发现-The temperature-volume relationship n、p不变,V∝T or V/T = constant (3) Avogadro’s law(1778-1823)Italian physicist Avogadro’s hypothesis :Equal volumes of gases at the same temperature and pressure contain equal numbers of molecular. Avogadro’s law The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. T、p不变,V∝n 2.理想气体方程式(The ideal-gas equation) 由上三式得:V∝nT / p,即pV∝nT,引入比例常数R,得:pV = nRT 3.R:Gas constant Units l·atm·mol-1·K-1J·mol-1·K-1m3 ·Pa·mol-1·K-1cal·mol-1·K-1l·torr·mol-1·K-1 Numerical Value 0.08206 8.314 8.314 1.987 62.36 在标准状况下: 1.000 0.08206 273.15 22.41(L) 1.000 nRT V p ?? ===

理想气体和真实气体

第二节理想气体和真实气体 在空分装置中,其工质为气态物质,分子在不断地作热运动:移动、转动和振动,分子的数量是巨大的,运动是不规则的。因此,气体的性质是很复杂,很难找出其运动规律。为了便于分析,提出了理想气体这一概念。 凡能满足以下三个条件的气体称为理想气体: 1. 分子本身的体积忽略不计; 2. 分子相互没有作用力; 3. 分子间不发生化学反应。 理想气体虽然是一种实际上不存在的假想气体,但是在上述假设条件下,气体分子运动的规律就可大大简化,能得出简单的数学关系式。为区别理想气体把自然界中的实际气体叫做真实气体。真实气体 在通常压力下,大多数符合理想气体的假设条件。例如O 2.N 2 .H 2 等气体均符合上述条件。 1.2.1 气体的基本状态参数 描写物质的每一聚集状态下的特性的物理量,称为物质的状态参数。物质的每一状态都有确定数值的状态参数与其对应,只要有一个状态参数发生变化,就表示物质状态在改变。描写气体状态的基本参数是温度、压强和比容。 1.温度,它表示物体冷热的程度。从分子运动论的观点看,温度是分子热运动平均动能的量度,温度愈高,分子的热运动平均动能就愈大,为了具体地确定分子运动的数值,在工程上常用的测温标尺有摄氏温标和热力学温标。 摄氏温标规定在一个标准大气压下,冰的熔点为0度,水的沸点为100度,将它分成100等分,每一等分1度。用摄氏温度表示的温度叫做摄氏温度,量的符号t,单位名称摄氏度,单位符号℃,低于冰点温度,用负值表示,例如在6at下,空气液化温度为-173℃。 实践证明,-273℃是实际能够接近而不可能达到的最低温度。如果-273℃作为温度的起算点,就不为出现负温度值,把-273℃叫做绝对零度。从绝对零度起算,温度测度与摄氏温度相同,这种计算温度的标尺叫热力学温标,也称绝对温标。热力学温度量的符号T,单位名称开尔文,单位符号K。 两种温标的关糸是; T=273.15+(K) ,通常简化为T=273+t(K) t=T-273.15(℃)通常简化为t=T-273(℃) 例如,在标准大气压下,冰的熔点为0℃即273Κ。 测量温度的仪器有水银温度计、铂电阻温度计、热电偶温度计等。仪表指示的温度常用℃,而工程计算中常用K,为此应熟悉这两种温标的换算。由于摄氏温度和绝对温度所示的温标每一个刻度值大小一样,不论是采用那种温标,它们的数值是相同的。

常见气体性质

常见气体性质 一?氧气02 (通常状况下)化学性质及用途 (Q)无色无味的气体,不易溶于水,密度比空气略大 ①C + O2==CO(发出白光,放出热量) a.供呼吸; b.炼钢; c.气焊。 (注:02具有助燃性,但不具有可燃性,不能燃烧。) ②S + 02 ==SQ (空气中一淡蓝色火焰氧气中一紫蓝色火焰) ③4P + 502 == 2PQ5 (产生白烟,生成白色固体P2Q5) ④3Fe + 202 == Fe04 (剧烈燃烧,火星四射,放出大量的热,生成黑色固体) ⑤蜡烛在氧气中燃烧,发出白光,放出热量 二?氢气(H2) 无色无味的气体,难溶于水,密度比空气小,是最轻的气体。 ①可燃性: 2H2 + 02 ==== 2H0 H2 + C2 ==== 2HCI ②还原性: H2 + Cu0 === Cu + 20 3H2 + Fe:6 == 2Fe + 3H0 三.二氧化碳(CQ) 无色无味的气体,密度大于空气,能溶于水,固体的C02叫干冰” ①C02 + Hz0 ==HCQ(酸性)(H2CQ === H20 + C0f )(不稳定) a. 用于灭火(应用其不可燃烧,也不支持燃烧的性质) b. 制饮料、化肥和纯碱 CQ + Ca(0H) ==CaC0j +H0(鉴别CQ) C02 +2Na0H==Na2C03 + H20

② 氧化性:CQ + C == 2C0 CaC0 == Ca0 + CE (工业制C02)四?一氧化碳(CO) 无色无味气体,密度比空气略小,难溶于水,有毒气体。 ①可燃性:2CO + O == 2CO (火焰呈蓝色,放出大量的热,可作气体燃料) ②还原性:CO + CuO === Cu + CO 3CO + FeO3 == 2Fe + 3CO其中遇红色石蕊试纸变蓝。 (2)用蘸有浓盐酸或浓硝酸的玻璃棒靠近装待检气体的瓶口,如果有白烟产生,则待检气体是NH3。 五.I讯 让待检气体在空气中燃烧(火焰为淡蓝色),在火焰上方罩一干燥的小烧杯,烧杯上有液滴生成,然后将产物与澄清的石灰水接触,澄清的石灰水变浑浊,则证明燃烧气体为、匚吃+ 202** :C0a十2局0 g+a= 6UQ X +尽0 六.NO 直接将盛待检气体的瓶盖打开,如果在瓶口附近有红棕色气体产生,则证明待检气体是NO。 (无色)|+Q=2WQ|(红棕色) 七.g 将待检气体溶于水中,若待检气体红棕色变为无色,且水溶液也呈无色,则证明待检气体是NO2。 g (红棕色)+HA2EN6+N0(无色) 9. (红棕色)将待检气体溶于水中,若待检气体红棕色变为无色,且水溶液也呈无

第一章 气体自测题

第一章 气体自测题 1. 在温度恒定为25℃,体积恒定为25 dm 3的容器中,含有0.65 mol 的理想气体A , 0.35 mol 的理想气体B ;若向容器中再加人0.4 mol 的理想气体D , 则B 的分压力B p ( ), 分体积* B V ( )。 (A) 变大;(B) 变小;(C) 不变;(D) 无法确定。 2. 由A(g )和B(g )形成的理想气体混合系统,总压p =p A +p B ,体积V =*A V +* B V ,n =n A + n B 下列各式中,只有式( )是正确的。 (A) *B B B p V n RT =;(B) *A pV nRT =;(C) B B p V n RT =;(D) * A A A p V n RT =。 3. (1)在一定的T ,p 下(假设高于波义耳温度T B ): V m (真实气体)( )V m (理想气体) (2)在n ,T ,V 皆为定值的条件下: p (范德华气体)( )p (理想气体) (3)在临界状态下,范德华气体的压缩因子 c Z ( )1 (A)>;(B)=;(C)<;(D)不能确定。 4. 已知A(g )和B(g )的临界温度之间的关系为:c c (A)(B)T T >;临界压力之间的关系为: c c (A)(B)p p <。则A ,B 气体的范德华常数a 和b 之间的关系必然是:a (A)( )a (B); b (A)( )b (B)。 (A)>;(B)<;(C)=;(D)不能确定。 5. 在一个密闭的容器中放有足够多的某纯液态物质,在相当大的温度范围内皆存在气(g )、 液(l )两相平衡。当温度逐渐升高时液体的饱和蒸气压* p 变大,饱和液体的摩尔体积V m (1) ( );饱和蒸气的摩尔体积V m (g )( );m m m =()()V V g V l ?-( )。 (A)变小;(B)变大;(C)不变;(D)无一定变化规律。 6. 在t =-50℃,V =40 dm 3的钢瓶内纯H 2的压力p =12.16 × 106 Pa 。此时钢瓶内H 2的相态必然是( )。 (A)气态;(B)液态;(C)固态;(D)无法确定。 7. 在温度恒定为373.15 K ,体积为2.0 dm 3的容器中含有0.035 mol 的水蒸气H 2O(g )。若向 上述容器中再加人0. 025 mol 的水H 2O(1)。则容器中的H 2O 必然是( )。 (A)液态;(B)气态;(C)气-液两相平衡;(D)无法确定其相态。 8. 当真实气体的温度T 与其波义耳温度T B 为:

常见气体性质

常见气体性质 一.氧气O2 (通常状况下) 化学性质及用途 (O2) 无色无味的气体,不易溶于水,密度比空气略大 ①C + O2==CO2(发出白光,放出热量) a. 供呼吸; b. 炼钢; c. 气焊。 (注:O2具有助燃性,但不具有可燃性,不能燃烧。) ②S + O2 ==SO2 (空气中—淡蓝色火焰;氧气中—紫蓝色火焰) ③4P + 5O2 == 2P2O5 (产生白烟,生成白色固体P2O5) ④3Fe + 2O2 == Fe3O4 (剧烈燃烧,火星四射,放出大量的热,生成黑色固体) ⑤蜡烛在氧气中燃烧,发出白光,放出热量 二.氢气(H2) 无色无味的气体,难溶于水,密度比空气小,是最轻的气体。 ① 可燃性: 2H2 + O2 ==== 2H2O H2 + Cl2 ==== 2HCl ② 还原性: H2 + CuO === Cu + H2O 3H2 + Fe2O3 == 2Fe + 3H2O 三. 二氧化碳(CO2) 无色无味的气体,密度大于空气,能溶于水,固体的CO2叫“干冰”。 ①CO2 + H2O ==H2CO3(酸性) (H2CO3 === H2O + CO2↑)(不稳定) a.用于灭火(应用其不可燃烧,也不支持燃烧的性质) b.制饮料、化肥和纯碱 CO2 + Ca(OH)2 ==CaCO3↓+H2O(鉴别CO2) CO2 +2NaOH==Na2CO3 + H2O ②氧化性:CO2 + C == 2CO CaCO3 == CaO + CO2↑(工业制CO2)

四.一氧化碳(CO) 无色无味气体,密度比空气略小,难溶于水,有毒气体。 ①可燃性:2CO + O2 == 2CO2 (火焰呈蓝色,放出大量的热,可作气体燃料) ②还原性:CO + CuO === Cu + CO2 3CO + Fe2O3 == 2Fe + 3CO2其中遇红色石蕊试纸变蓝。 (2)用蘸有浓盐酸或浓硝酸的玻璃棒靠近装待检气体的瓶口,如果有白烟产生,则待检气体是NH3。 五. 让待检气体在空气中燃烧(火焰为淡蓝色),在火焰上方罩一干燥的小烧杯,烧杯上有液滴生成,然后将产物与澄清的石灰水接触,澄清的石灰水变浑浊,则证明燃烧气体为。 六. NO 直接将盛待检气体的瓶盖打开,如果在瓶口附近有红棕色气体产生,则证明待检气体是NO。 (无色)(红棕色) 七. 将待检气体溶于水中,若待检气体红棕色变为无色,且水溶液也呈无色,则证明待检气体是NO2。 (红棕色)(无色)

专题五 常见气体的性质及制取几种常见的气体

几种常见的气体 考点梳理 一、物理性质(固态CO2称为干冰,易升华) 二、化学性质 O2:氧化性 缓慢氧化:支持人和动物的呼吸;金属的锈蚀;食物的腐烂等都属于缓慢氧化。CO2 1、不燃烧也不支持燃烧 2、可以与水反应:H2O+CO2=H2CO3 3、可以与碱溶液反应Ca(OH)2+CO2=CaCO3↓+H2O2NaOH+CO2=Na2CO3+H2O 澄清石灰水往往用来鉴别是否含有CO2;NaOH溶液往往用来吸收CO2 H2、CO 1、可燃性:2H2+O2点燃2H2O;2CO+O2点燃2CO2 2、还原性:CuO+H2 △ Cu+H2O;Fe2O3+3H2 △ 2Fe+3H2O CuO+CO △ Cu+CO2;Fe2O3+3CO高温2Fe+3CO2 CO除以上性质外,还具有毒性。 CH4 :可燃性:CH4+2O2点燃CO2+2H2O 三、制法 1、反应原理 2、发生装置: 选择依据——反应物状态(固体或固液混合); 反应条件(是否需要加热) 3、收集装置: 选择依据——气体的溶解性;气体的密度(与 空气密度大小比较)且不与空气中成份和水反应。 4、检验: O2将带火星的木条伸入到气体中带火星的木条复燃 CO2将气体通入到澄清石灰水中(或将澄清石灰水倒入盛有气体的集气瓶中,振 第 1 页共6 页

荡)澄清石灰水变浑浊 5、验满 O2将带火星的木条放到集气瓶口带火星的木条复燃 CO2将燃着的木条放到集气瓶口燃着的木条熄灭 四、综合应用 1、气体的鉴别 2、气体除杂 考点练习 1.(2012.泰安市)对比是学习化学的重要方法。下列关于CO2与CO的比较错.误.的是 A.一个二氧化碳分子比一个一氧化碳分子多一个氧原子 B.CO2能溶于水,CO难溶于水C.CO2可用于光合作用,CO可用于人工降雨D.CO2会造成温室效应,CO易与血液中的血红蛋白结合引起中毒 2.(2012.肇庆市)鉴别O2、CO、CO2三种气体,可行简便的方法是()A.将气体分别通入澄清石灰水B.将气体分别通入石蕊试液 C.试验三种气体在水中溶解性D.用燃着的木条分别伸入瓶内3.(2013.株洲市)鸡蛋壳的主要成分是碳酸钙。将一个新鲜的鸡蛋放在盛有足量稀盐酸的玻璃杯中,可以观察到鸡蛋冒气泡,该气泡的主要成分是()A.H2B.CO2C.O2D.N2 4.(2013.日照市)某无色混合气体可能由CH4、H2、CO、CO2和HCl中的某几种气体组成。将此混合气体通过过量的澄清石灰水,未见变浑浊,但混合气体的总体积减小,把剩余气体导出后,在O2中能够点燃,燃烧产物不能使白色CuSO4粉末变蓝色。则原混合气体的成份是() A.HCl和CO B.HCl、H2和CO2C.CH4和H2D.CO和CO2 5.某气体可能含有H2、CO、CH4中的一种或两种。在空气中点燃该气体,用干燥玻璃片放在火焰上方,干燥玻璃片上有水雾,用另一个蘸有石灰水的烧杯罩在火焰上方,石灰水边浑浊。根据上述实验判断,该气体成分可能是() A.CO B.H2和CO C.CH4 D.H2 6.(2013.山西)在实验室中,同学们用如下装置制取纯净的CO2,下列说法不正确的是()【查阅资料】饱和碳酸氢钠溶液可以吸收HCl而不吸收CO2 A.①中固体反应物也可用Na2CO3固体代替 B.③中没有白色沉淀产生,说明CO2气体中已经不混有HCl气体 C.④中浓H2SO4的作用是吸收CO2气体中混有的H2O D.将燃着的小木条放在⑤中的集气瓶口,可以检验集气瓶是否收集满CO2 7、将一定量的镁条放入到过量的稀盐酸中,下列表示反应过程中变化关系的曲线,正确的是() 8.(2013.盐城市)(12分)盐城市2013年中考化学实验考查有:①氧气的制取; ②二氧化碳的制取;③配制50g 5%的NaCl溶液等六个考签,由学生抽签确定一个考题进行考查。 第 2 页共6 页

各种气体的特性和颜色

各种气体的特性和颜色 有色都有毒,有色都刺激。 1、有色气体:F2(淡黄绿色)、Cl2(黄绿色)、Br2(g)(红棕色)、I2(g)(紫红色)、NO2(红棕色)、O3(淡蓝色),其余均为无色气体。 2、有刺激性气味的气体:HF、HCl、HBr、HI、NH 3、SO2、NO2、F2、Cl2、Br2(g);有臭鸡蛋气味的气体:H2S。 3、极易溶于水能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。 4、易液化的气体:NH3、Cl2 。 5、有毒的气体:F2、HF、Cl2、H2S、SO2、CO、NO2、NO、Br2(g)、HCN。 6、在空气中易形成白雾的气体:NH3、HF、HCl、HBr、HI。 7、常温下不能共存的气体:H2S和SO2、H2S和Cl2、HI和Cl2、NH3和HCl、NO和O2、F2和H2。 8、其水溶液呈酸性的气体:HF、HCl、HBr、HI、H2S、SO2、CO2、NO2、Br2(g)。 可使湿润的红色石蕊试纸变蓝的气体:NH3。 9、有漂白作用的气体:Cl2(有水时)和SO2,但两者同时使用时漂白效果减弱。检验Cl2常用Cl2能使湿润的紫色石蕊试纸先变红后褪色。 10、能使澄清石灰水变浑浊的气体:CO2和SO2,但通入过量气体时沉淀又消失。 11、在空气中可以燃烧的气体:H2、CO、CH4、C2H4、C2H2、H2S。在空气中燃烧火焰呈蓝色(或淡蓝色)的气体:H2S、H2、CO、CH4。 12、具有强氧化性的气体:F2、Cl2、Br2(g)、NO2、O2、O3;具有强或较强还原性的气体:H2S、H2、CO、NH3、HI、HBr、HCl、NO;SO2和N2既具有氧化性又具有还原性。 13、与水可反应的气体:Cl2、F2、NO2、Br2(g)、CO2、SO2、NH3;其中Cl2、NO2、Br2(g)与水的反应属于氧化还原反应(而且都是歧化反应),只有F2与水剧烈反应产生O2。 14、能使湿润的淀粉碘化钾试纸变蓝的气体:Cl2、NO2、Br2(g)、O3。 15、能使溴水和酸性高锰酸钾溶液褪色的气体:H2S、SO2、C2H4、C2H2。 16、可导致酸雨的主要气体:SO2;

常见气体的性质及用途

○氢气(H)的性质与用途 物理性质氢气就是无色、无臭、难溶于水的气体,密度比空气小,就是相同条件下密度最小的气体。 化学性质可燃性2H2+O22H2O 氢气燃烧时发出淡蓝色火焰,放出热量,并有水珠产生。 氢气点燃前,一定要验纯。 纯净的氢气在空气里安静地燃烧,发出淡蓝色火焰,放出热量。不纯的氢气(混有一 定量空气或氧气)遇明火会发生爆炸。 还原性 氢气还原氧化铜 H2+CuO△Cu+H2O 黑色的氧化铜粉末在氢气中加热逐渐变成红色,试管口有水珠产生。 氢气“早出晚归” 氢气还原氧化铜实验注意事项: “酒精灯迟到早退”,即①开始时要先通入氢气后加热(目的就是排净管内空气,防止 氢气与管内空气混合受热发生爆炸);②实验结束时要先停止加热,继续通入氢气至 试管冷却(防止生成的铜受热被氧化成CuO) 氢气还原氧化铁 3H2 + Fe2O3 △2Fe + 3H2O 氢气的用途①填充气(密度比空气小),如充气球、飞舰 ②(可燃性)高能燃料,氢氧焰焊接与切割金属。 ③(还原性)冶炼重要金属 ④化工原料(合成氨、制盐酸) 氢气与其它气体的显著区别之处相同条件下氢气密度最小 证明氢气密度比空气小的方法用氢气吹肥皂泡,若肥皂泡上升,则密度比空气小。 氢能源的三大优点氢气被认为就是最清洁的燃料。 ①生成物就是水,产物无污染。 ②热值高,放热多。

○氧气的性质与用途

○二氧化碳的性质与用途

大气中二氧化碳 的消耗 二氧化碳溶于水、植物的光合作用。 ○一氧化碳的性质与用途 物理性质无色、无味气体,比空气的密度略小,难溶于水,有毒气体。 化学性质①可燃性 一氧化碳在空气中燃烧生成二氧化碳2CO+O22CO2 发出蓝色火焰,放热,生成能使澄清石灰水变 浑浊的气体。 可燃性气体点燃前一定要检验纯度煤炉从上至下,常发生的三个反应 ①2CO+O22CO2 ②CO2+C2CO ③C+O2CO2 ②还原性 一氧化碳还原氧化铜(不就是置换反 应) CO+CuO △ Cu+CO2 (非置换反应) 黑色物质受热后变为亮红色固体,同时放出能 使石灰水变浑浊的气体。 一氧化碳还原氧化铁Fe2O3+3CO2Fe+3CO2红棕色粉末逐渐变成黑色,石灰水变浑浊。 ③毒性 因为一氧化碳吸进肺里极易与血液中的血红蛋白结合,破坏了血红蛋白的输氧能力,造成生物体内缺氧而中毒,严重 时会危及生命。 正常的血液呈深红色,当通入一氧化碳后,血液由深红色变成浅红色。 检验方法通过灼热的氧化铜粉末,粉末由黑色逐渐变成红色,产生的气体能使澄清石灰水变浑浊 危害缺氧中毒(一氧化碳吸进肺里极易跟血红蛋白极易结合,破坏了血红蛋白的输氧能力,造成生物体内缺氧而中毒,严重时会危及生命,因此在冬季用煤炉来取暖时,要注意房间的通风与换气。) 特别注意尾气的处理一氧化碳有剧毒,会使空气受污染,必须把未反应的CO燃烧转变成无污染的CO2制取实验中的收集方法一氧化碳只能用排水法收集,不能用向下排空气法收集。

气体性质答案

2 3 4 2 基础实验专题之气体的性质答案 1、氧气和二氧化碳的性质 (1)如图是同学们在研究氧气性质实验的装置图,A 和 C 加入水的目的分别 是 吸收二氧化硫,防止污染空气 ;防止生成的高温熔融物溅落瓶底使瓶底炸裂 ,其中可用细沙代替水的是图 C 。 (2)C 装置中的现象是 剧烈燃烧,火星四射,放出大量热,生成黑色固体 , 点燃 发生的化学反应方程式是: 3Fe+2O = Fe O ,做铁丝在氧气中燃烧实验 时,某同学做铁丝燃烧的实验时在集气瓶中留了适量的水,可实验中集气瓶还 是炸裂了,可能的原因是 铁丝碰到集气瓶内壁 。 (3) 如图 D 所示,将点燃的木炭迅速伸入氧气瓶中,观察到图 D 中木炭燃烧 不如图 B 中剧烈,原因是 空气中氧气含量比氧气中低 。 (4) 图 B 实验结束后,向集气瓶中倒入适量澄清石灰水,振荡,观察到的现 象是 澄清石灰石变浑浊 。 (5) 上述所发生的三个反应有多个共同的特点,你所发现的分别是① 都是氧化反应 ;② 都是化合反应 ;③ 都放热 (只答三点即可)。 (6) 将点燃的硫伸入装置 A 中,观察到的现象是 产生蓝紫色火焰,放热,生 成一种有刺激性气味的气体,反应的化学方程式为 S+O 硫在空气中燃烧火焰的颜色是 淡蓝色 。 点燃 = SO , 2

(7)向装置A 的软塑料瓶中加入约1/4 体积水,立即旋紧瓶盖,振荡,观察到的现象软塑料瓶变瘪,该现象说明了二氧化碳的一条物理性质是二氧化碳能溶于水.然后打开瓶盖,向液体中滴入紫色石蕊试液,观察到的现象是 紫色石蕊试液变红,说明二氧化碳的化学性质H2O+CO2=H2CO3(用化学方程式表示) (8)根据装置B 进行实验时的现象,可以证明集气瓶中的气体是O2 (填化学式). (9)根据装置D 中的现象,说明二氧化碳的化学性质二氧化碳不支持燃烧,不燃烧,结合上述性质写出一条二氧化碳的用途灭火 (10)E 是探究二氧化碳性质的实验.图中①、④为用紫色石蕊溶液润湿的棉球,②、③为用石蕊溶液染成紫色的干燥棉球.能说明CO2 密度大于空气且能与水反应的现象为④比①先变红, ②③不变红. (11) 请你记录在实验1 和实验2 过程中观察到的现象:①干石蕊纸花不变红 ② 干石蕊纸花喷水后变红,可以得出的实验结论是二氧化碳能和水反应,生成物能使紫色石蕊变红 将实验2 的小花从瓶中取出后,放在阳光下一段时间后,会观察到纸花由红色变紫色反应的方程式为 H2CO3 = H2O+CO2↑ 2.利用氧气性质测定空气中氧气的含量

相关主题
文本预览
相关文档 最新文档