气体的pVT性质
- 格式:doc
- 大小:3.21 MB
- 文档页数:200
物理化学天津大学第四版答案【篇一:5.天津大学《物理化学》第四版_习题及解答】ass=txt>目录第一章气体的pvt性质 ....................................................................................................... (2)第二章热力学第一定律 ....................................................................................................... . (6)第三章热力学第二定律 ....................................................................................................... .. (24)第四章多组分系统热力学 ....................................................................................................... . (51)第五章化学平衡 ....................................................................................................... .. (66)第六章相平衡 ....................................................................................................... (76)第七章电化学 ....................................................................................................... (85)第八章量子力学基础 ....................................................................................................... . (107)第九章统计热力学初步 ....................................................................................................... ...... 111 第十一章化学动力学 ....................................................................................................... . (117)第一章气体的pvt性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
第一章 气体的PVT 性质主要内容1. 理想气体状态方程及微观模型2. Daltonp 定律与Amagat 定律3. 实际气体的PVT 性质4. 范德华方程5. 实际气体的液化与临界性质重点1. 重点掌握理想气体状态方程及微观模型2. 重点掌握Daltonp 定律与Amagat 定律3. 重点掌握实际气体的液化与临界性质难点1. 理想气体模型及其理论解释2. 实际气体的液化与临界性质教学方式1. 采用CAI 课件与黑板讲授相结合的教学方式2. 合理运用问题教学或项目教学的教学方法教学过程一、理想气体状态方程17世纪中期,为了寻找气体的状态方程,通过大量实验得出:状态方程: pV =nRT (其中压力越低越符合条件)R =0lim m p pV R T p T→=↓↑ R=8.314J/K ⋅mol 理想气体定义与模型定义:在任何温度及任何压力下都能严格服从上面的状态方程的气体就定义为理想气体。
上式就称为理想气体的状态方程。
模型:分子为质点,无体积;分子间无相互作用力。
二、Daltonp 定律与Amagat 定律1. Daltonp 定律与分压力混合气体的总压力等于混合气体中各组分气体在与混合气体有相同温度和相同体积条件下单独存在时所产生的压力之和(只适用于理想气体)。
B Bp p =∑ B B p y p =(适用于任何气体)分压力B p 是它的摩尔分数B y 与混合气体的总压力p 之积。
2. Amagat 定律混合气体的总压力等于混合气体中各组分气体在与混合气体有相同温度和相同体积条件下单独存在时所产生的压力之和(只适用于理想气体)。
BB V V =∑ (只适用于理想气体)//B B B V y nRT p n RT p ==(只适用于理想气体)三、实际气体的PVT 性质,///m m m m idV V Z pV nRT pV RT RT p V ==== m V 实际气体在某一确定状态下的摩尔体积,m id V 代表与实际有相同温度和相同压力的理想气体的摩尔体积用大小相等分子间的引力与斥力作比理想气体易压缩同温同压下,实际气体比理想气体难压缩同温同压下,实际气体111=<>Z四、范德华方程RT b V V a p m m=-+))((2 22()()n a p V nb nRT V+-= 五、实际气体的液化与临界性质 1. c T T >,任何p 均不液化同一温度,p ↑,偏离↑ 同一压力,T ↓,偏离↑ 2. c T T <3. c T T =,临界点定义 临界温度c T临界压力c P临界摩尔体积c V。
第一章 气体pVT 性质1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-8二者均克视为理想气体。
(1压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。
p dmRT n p dm RT n p N N H H ====33132222 (1) 得:223N H n n =而抽去隔板后,体积为4dm 3,温度为,所以压力为3331444)3(2222dmRT n dm RT n dm RT n n V nRT p N N N N ==+==(2) 比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。
一、填空题1.温度为400K ,体积为2m 3的容器中装有2mol 的理想气体A 和8mol 的理想气体B ,则该混合气体中B 的分压力p B =( )KPa 。
13.3022.在300K ,100KPa 下,某理想气体的密度ρ=80.8275×10-3kg ·m -3。
则该气体的摩尔质量M=( )。
3.恒温100°C 下,在一带有活塞的气缸中装有3.5mol 的水蒸气H 2O (g ),当缓慢地压缩到压力p=( )KPa 是才可能有水滴H 2O (l )出现。
4.恒温下的理想气体,其摩尔体积随压力的变化率Tmp V ⎪⎪⎭⎫ ⎝⎛∂∂ =( )。
5,一定的范德华气体,在恒容条件下,其压力随温度的变化率()=∂∂V T /p .6.理想气体的微观特征是:( )7. 在临界状态下,任何真实气体的宏观特征为:( )8. 在n,T 在一定的条件下,任何种类的气体当压力趋近于零时均满足:()=→pV p lim 0( ).9.实际气体的压缩因子定义为Z=( )。
当实际气体的Z>1时,说明该气体比理想气体( )三、问答题理想气体模型的基本假设是什么?什么情况下真实气体和理想气体性质接近?增加压力真实气体就可以液化,这种说法对吗,为什么?第二章 热力学第一定律――附答案一、填空题1. 理想气体向真空膨胀过程 , 下列变量中等于零的有 : 。
2. 双原子理想气体经加热内能变化为 ,则其焓变为 。
3. 在以绝热箱中置一绝热隔板,将向分成两部分,分别装有温度,压力都不同的两种气体,将隔板抽走室气体混合,若以气体为系统,则此过程 。
4. 绝热刚壁容器内发生CH 4+2O 2=CO 2+2H 2O 的燃烧反应,系统的 Q ___ 0 ; W ___ 0 ;∆U ___ 0;∆H ___ 05. 某循环过程 Q = 5 kJ, 则 ∆U + 2W + 3 ∆(pV) = __________.6. 298K 时, S 的标准燃烧焓为-296.8 kJ ⋅mol -1, 298K 时反应的标准摩尔反应焓 ∆r H m = ________ kJ ⋅mol -1 .7. 已知 的 , 则 的 。
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V p V VT V V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff ff f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。
物理化学模拟试题及答案第一章气体的PVT性质选择题1.理想气体模型的基本特征是(A)分子不断地作无规则运动、它们均匀分布在整个容器中(B)各种分子间的作用相等,各种分子的体积大小相等(C)所有分子都可看作一个质点,并且它们具有相等的能量(D)分子间无作用力,分子本身无体积答案:D2.关于物质临界状态的下列描述中,不正确的是(A)在临界状态,液体和蒸气的密度相同,液体与气体无区别(B)每种气体物质都有一组特定的临界参数C)在以p、V为坐标的等温线上,临界点对应的压力就是临界压力(D)临界温度越低的物质,其气体越易液化答案:D3.对于实际气体,下面的陈述中正确的是(A)不是任何实际气体都能在一定条件下液化(B)处于相同对比状态的各种气体,不一定有相同的压缩因子(C)对于实际气体,范德华方程应用最广,并不是因为它比其它状态方程更精确(D)临界温度越高的实际气体越不易液化答案:C4.理想气体状态方程pV=nRT表明了气体的p、V、T、n、这几个参数之间的定量关系,与气体种类无关。
该方程实际上包括了三个气体定律,这三个气体定律是(A)波义尔定律、盖-吕萨克定律和分压定律(B)波义尔定律、阿伏加德罗定律和分体积定律(C)阿伏加德罗定律、盖-吕萨克定律和波义尔定律(D)分压定律、分体积定律和波义尔定律答案:C问答题1.什么在真实气体的恒温PV-P曲线中当温度足够低时会出现PV值先随P的增加而降低,然后随P的增加而上升,即图中T1线,当温度足够高时,PV值总随P的增加而增加,即图中T2线?答:理想气体分子本身无体积,分子间无作用力。
恒温时pV=RT,所以pV-p线为一直线。
真实气体由于分子有体积且分子间有相互作用力,此两因素在不同条件下的影响大小不同时,其pV-p曲线就会出现极小值。
真实气体分子间存在的吸引力使分子更靠近,因此在一定压力下比理想气体的体积要小,使得pV<RT。
另外随着压力的增加真实气体中分子体积所点气体总体积的比例越来越大,不可压缩性越来越显著,使气体的体积比理想气体的体积要大,结果pV>RT。
第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 ︒C,另一个球则维持0 ︒C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 ︒C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算气(附录七)用van der Waals计算,查表得知,对于N2,用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 ︒C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ︒C,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25 ︒C及10 ︒C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。
但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。
若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300 K时水的饱和蒸气压为3.567 kPa。
解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压第二章热力学第一定律2.5 始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47 ︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 C,求的值。
解:根据焓的定义2.10 2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。
求20 ︒C,液态乙醇的。
解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。
今利用加热器件使器内的空气由0 ︒C加热至20 ︒C,问需供给容器内的空气多少热量。
已知空气的。
假设空气为理想气体,加热过程中容器内空气的温度均匀。
解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。
这是因为,从小孔中排出去的空气要对环境作功。
所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。
2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol 的Ar(g)及150 ︒C,2 mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则(g)的摩尔2.16 水煤气发生炉出口的水煤气的温度是1100 ︒C,其中CO(g)和H2分数均为0.5。
若每小时有300 kg的水煤气由1100 ︒C冷却到100 ︒C,并用所收回的热来加热水,是水温由25 ︒C升高到75 ︒C。
求每小时生产热水的质量。
(g)的摩尔定压热容与温度的函数关系查本书附录,水的CO(g)和H2比定压热容。
(g)的物质量分别为解:300 kg的水煤气中CO(g)和H2300 kg的水煤气由1100 ︒C冷却到100 ︒C所放热量设生产热水的质量为m,则2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 ︒C 的单原子理想气体A及5 mol,100 ︒C的双原子理想气体B,两气体的压力均为100 kPa。
活塞外的压力维持在100 kPa不变。
今将容器内的隔板撤去,使两种气体混合达到平衡态。
求末态的温度T及过程的。
解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.20 在一带活塞的绝热容器中有一固定的绝热隔板。
隔板靠活塞一侧为2 mol,0 ︒C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 ︒C的双原子理想气体B,其体积恒定。
今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。
解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。
求末态温度T及整个过程的及。
解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。
而第一步为恒温可逆2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。
证明:根据理想气体绝热方程,得,因此。
因此绝热线在处的斜率为恒温线在处的斜率为。
由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。
2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。
两气体均为0 C,100 kPa。
A气体内部有一体积和热容均可忽略的电热丝。
现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。
求:(1)气体B的末态温度。
(2)气体B得到的功。
(3)气体A的末态温度。
(4)气体A从电热丝得到的热。
解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W= 0,因此2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。
始态温度,压力。
今以气体B为系统,求经可逆膨胀到时,系统的及过程的。
解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。
作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体BO, l)在100 ︒C的饱和蒸气压,在此温度、压2.26 已知水(H2力下水的摩尔蒸发焓。
求在在100 ︒C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。
设水蒸气适用理想气体状态方程式。
解:该过程为可逆相变2.28 已知 100 kPa 下冰的熔点为 0 °C,此时冰的比熔化焓热J·g-1. 水的平均定压热容。
求在绝热容器内向1 kg 50 °C 的水中投入 0.1 kg 0 °C 的冰后,系统末态的温度。
计算时不考虑容器的热容。
解:经粗略估算可知,系统的末态温度T应该高于0 °C, 因此2.29 已知 100 kPa 下冰的熔点为0 °C,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。
今在绝热容器内向1 kg 50 °C 的水中投入 0.8 kg 温度 -20 °C 的冰。
求:(1)末态的温度。
(2)末态水和冰的质量。
解:1 kg 50 °C 的水降温致0 °C 时放热0.8 kg -20 °C 的冰升温致0 °C 时所吸热完全融化则需热因此,只有部分冰熔化。
所以系统末态的温度为0 °C。
设有g的冰熔化,则有系统冰和水的质量分别为2.30 蒸汽锅炉中连续不断地注入 20 °C的水,将其加热并蒸发成 180 °C,饱和蒸汽压为 1.003 MPa 的水蒸气。
求生产 1 kg 水蒸气所需要的热量。
已知:水在 100 °C的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气的摩尔定压热容与温度的函数关系见附录。
解:将过程看作是恒压过程(),系统的初态和末态分别为和。