第1章气体的PVT关系
- 格式:ppt
- 大小:2.45 MB
- 文档页数:40
物理化学上册习题解(天津大学第五版)第一章 气体的 pVT 关系1-1 物质的体膨胀系数 V与等温压缩系数 T 的定义如下:1 V 1 VV TV T p试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRTV p T1 V VT V 1 V Tp VpT1 (nRT / p)V T1 ( nRT / p) Vp1 nR 1 V T 1 p V p V T 1 nRT 1 V p 1T V p 2 V p1-2 气柜内有 3 90kg 的流量输往使用车间,试问贮121.6kPa 、27℃的氯乙烯( C2H3Cl )气体 300m ,若以每小时 存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为pV121.6 103300n 8.314 14618.623molRT 300.15 3 3 每小时 90kg 的流量折合 p 摩尔数为 v90 10 90 10 1441.153mol h 1M C 2H3Cl 62.45 n/v= ( 14618.623 ÷1441.153 ) =10.144 小时1-3 0 ℃、 101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:CH 4 n M CH 4 p M CH 4 101325 16 103 0.714kg m 3V RT 8.314 273.151-4 一抽成真空的球形容器,质量为 25.0000g 。
充以 4℃水之后,总质量为 125.0000g 。
若改用充以 25℃、 13.33kPa 的某碳氢化合物气体,则总质量为 25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积V125.0000 25.000 100.0000 cm 3 100.0000cm 3H 2 O(l ) 1n=m/M=pV/RTM RTm 8.314 298.15 (25.0163 25.0000) mol pV 13330 10 430.31g1-5 两个体积均为 V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第一章 气体的pVT 关系物质的聚集状态一般可分为三种,即气体、液体和固体。
气体与液体均可流动,统称为流体;液体和固体又统称为凝聚态。
三种状态中,固体虽然结构较复杂,但粒子排步的规律性较强,对它的研究已有了较大的进展;液体的结构最复杂,人们对其认识还很不充分;气体则最为简单,最容易用分子模型进行研究,故对它的研究最多,也最为透彻。
无论物质处于哪一种聚集状态,都有许多宏观性质,如压力p ,体积V ,温度T ,密度ρ,热力学能U 等等。
众多宏观性质中,p , V , T 三者是物理意义非常明确、又易于直接测量的基本性质。
对于一定量的纯物质,只要p , V , T 中任意两个量确定后,第三个量即随之确定,此时就说物质处于一定的状态。
处于一定状态的物质,各种宏观性质都有确定的值和确定的关系①。
联系p , V , T 之间关系的方程称为状态方程。
状态方程的建立常成为研究物质其它性质的基础。
液体和固体两种凝态,其体积随压力和温度的变化均较小,即等温压缩率T T p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ和体膨胀系数pV T V V ⎪⎭⎫ ⎝⎛∂∂=1α都较小,故在通常的物理化学计算中常忽略其体积随压力和温度的变化。
与凝聚态相比,气体具有较大的等温压缩率κT 和体膨胀系数αV ,在改变压力和温度时,体积变化较大。
因此一般的物理化学中只讨论气体的状态方程。
根据讨论的p , T 范围及使用精度的要求,通常把气体分为理想气体和真实气体分别讨论。
§1.1 理想气体状态方程1.理想气体状态方程从17世纪中期,人们开始研究低压下(p <1 MPa )气体的p VT 关系发现了三个对各种气体均适用的经验定律:(1)波义尔(Boyle R)定律 在物质的量和温度恒定的条件下,气体的体积与压力成反比,即p V =常数 (n ,T 一定)(2)盖-吕萨克(Gay J -Lussac J )定律 在物质的量与压力恒定的条件下,气体的体积与热力学温度成正比,即V/T =常数 (n , p 一定)(3)阿伏加德罗(Avogadro A )定律 在相同的温度、压力下,1mol 任何气体占有相同体积,即V / n =常数 (T ,p 一定)将上述三个经验定律相结合,整理可得到如下的状态方程:p V = n RT (1 .1 .1a )上式称为理想气体状态方程。
物理化学主要公式第一章 气体的pVT 关系1.理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2.气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3.道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4.阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5.范德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
第一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
第一章气体的pvT关系⑴波义尔定律:当n、T一定时,PV=常数⑵盖-吕萨克定律:当n、P一定时,V/T=常数⑶阿伏伽德罗定律:当T、P一定时,V/n=常数●⑷理想气体状态方程:PV=(m/M)RT= nRT或者或PVm=p(V/n)=RTR=8.314mol-1·K-1称为摩尔气体常数;T为华氏温度⑸摩尔分数:X B=n B/n总●⑹道尔顿定律:P B=P总X B;P总=P分⑺实际气体状态方程:PV=znRT(z为压缩因子)●⑻理想气体特征:①分子间无相互作用力②分子本身不占有体积第二章热力学第一定律热力学第一定律(能量守恒定律)●⑴系统:①隔离系统:无能量、无物质交换②★封闭系统:有能量、无物质交换(热力学基础;热力学研究对象)③敞开系统:有能量、有物质交换●⑵状态函数:P、V、T、U、H、G、A、S (P、T、C p, m、C V,m 为强度量,其他均为广度量) 状态函数特征:①有可微分性,能计算②只与始末状态有关●途径函数:Q、W●⑶热:系统从环境中吸热(Q>0);系统对环境做功(W<0)●⑷热力学能:△U=Q+W(封闭系统);U只是温度T的函数;只与首末有关非体积功的计算①气体向真空膨胀时体积功所的计算W=0②恒外压过程体积功W=-p(V2-V1)=-p△V③对于理想气体恒压变温过程W=-p△V=-nR△T④可逆过程体积功W=-p(v2-v1)●⑤理想气体恒温可逆过程体积功 W=-p(v2-v1)或者W=-nRTln(V1/V2)或者W=nRTln(p2/ p1)⑥理想气体绝热可逆过程体积功W=-p(v2-v1)=(-)γ= C p, m /C V,m(双原子气体为1.4)T2/T1=(V1/V2) 的γ-1次方;T2/T1=(P1/P2)的(γ-1)/γ次方;P2/P1=(V1/V2)的γ次方●⑦恒温膨胀可逆功最大,系统对环境作最大功;恒温可逆压缩,环境对系统做最小功⑧可逆相变体积功W=-pdV恒热容、恒压热,焓⑴焓定义:H=U + PV⑵焓变:△H=△U+△(pV)式中△(pV)为p V乘积的增量,只有在恒压下△(pV)=p(V2-V1)在数值上等于体积功。