15、同余法解题
- 格式:doc
- 大小:48.00 KB
- 文档页数:4
同余法解题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]五年级奥数培训资料第六讲同余法解题一、同余这个概念最初是由德国数学家高斯发明的。
同余的定义是这样的:两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。
记作a≡b(mod.m)。
读作:a同余于b模m。
同余的性质也比较多,主要有以下一些:1..对于同一个除数,两个数的乘积与它们余数的乘积同余。
例如201×95的乘积对于除数7,与201÷7的余数5和95÷7的余数4的乘积20对于7同余。
2..对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
例如519和399对于一个除数同余,那么这个除数一定是519与399的差的因数,即519与399的差一定能被这个除数整除。
3..对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。
例如20和29对于一个除数同余,那么20的任何次方都和29的相同次方对于这个除数同余,当然余数大小随次方变化。
4.对于同一个除数,若三个数a≡b(mod m),b≡c(mod m),那么a,b,c三个数对于除数m都同余(传递性)例如60和76同余于模8,76和204同余于模8,那么60,76,204都同余于模8。
5. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么a±c≡c±d (mod m),(可加减性)6. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么ac≡cd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?解法:求3个数:第一个:能同时被3和4整除,但除以5余4,即12X2=24第二个:能同时被4和5整除,但除以3余1,即20X2=40第三个:能同时被3和5整除,但除以4余2,即15x2=30这3个数的最小公倍数为60,所以满足条件的最小数字为24+40+30-60=3412X2=24 20X2=40 15x2=30中2的来历。
五年级奥数培训资料第六讲同余法解题一、同余这个概念最初就是由德国数学家高斯发明得。
同余得定义就是这样得: 两个整数,a,b,如果她们同时除以一个自然数m,所得得余数相同,则称a,b对于模m同余。
记作a≡b(mod.m)、读作:a同余于b模m。
同余得性质也比较多,主要有以下一些: 1、.对于同一个除数,两个数得乘积与它们余数得乘积同余。
例如201 ×95得乘积对于除数7,与201÷7得余数5与95÷7得余数4得乘积20对于7同余。
2.、对于同一个除数,如果有两个整数同余,那么它们得差就一定能被这个除数整除。
例如519与399对于一个除数同余,那么这个除数一定就是519与399得差得因数,即519与399得差一定能被这个除数整除。
3..对于同一个除数,如果两个数同余,那么她们得乘方仍然同余。
例如20与29对于一个除数同余,那么20得任何次方都与29得相同次方对于这个除数同余,当然余数大小随次方变化。
4、对于同一个除数,若三个数a≡b(modm),b≡c(modm),那么a,b,c三个数对于除数m都同余(传递性)例如60与76同余于模8,76与204同余于模8,那么60,76,204都同余于模8、5。
对于同一个除数,若四个数a≡b(modm),c≡d(mod m),那么a±c≡c±d(mod m),(可加减性)6。
对于同一个除数, 若四个数a≡b(mod m),c≡d(modm),那么ac≡cd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小就是几?解法:ﻫ求3个数:第一个:能同时被3与4整除,但除以5余4,即12X2=24ﻫ第二个:能同时被4与5整除,但除以3余1,即20X2=40第三个:能同时被3与5整除,但除以4余2,即15x2=30ﻫ这3个数得最小公倍数为60, 所以满足条件得最小数字为24+40+30-60=3412X2=24 20X2=4015x2=30中2得来历。
小学五年级奥数—数论之同余问题数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:1 当时:我们称a可以被b整除,q称为a除以b的商或完全商2 当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16 39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19 42除以5的余数等于3+4 7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1 3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
第4讲同余定理同余定理是奥数考试中最常考的题型,同时也是数论知识中最具有代表性的知识之一。
本讲将带领大家一起领略巧妙的数论方法,相信大家一定会被同余的意想不到的魅力所吸引。
若a c ÷余数为m ,b c ÷余数为n ,则()a b c +÷的余数等于()m n c +÷的余数;()a b c -÷的余数等于()m n c -÷的余数(m n >)或()m c n c +-÷的余数(m n <)。
a b c ⨯÷的余数等于m n c ⨯÷的余数。
特别的,当m n =时,()a b -是c 的倍数。
若两个整数a 、b 被同一个非零自然数c 除,余数相同,那么称a 、b 对于m 同余,用式子表示为(mod )a b c ≡.编写说明知识要点【例1】 有三个自然数a ,b ,c ,其中a 除以c 的余数是1,b 除以c 的余数是2,a b +恰好是c 的倍数,求c 的值。
【分析】 根据同余定理,a b +除以c 的余数是3,而a b +恰好是c 的倍数,所以3c =。
【拓展】 已知:6a b c -=,其中a 、b 、c 均为正整数,且b 除以6的余数是3,则a 除以6的余数是多少?【分析】 a b -是6的倍数,所以a 和b 除以6的余数相同,a 除以6的余数是3。
【温馨提醒】这边可以帮助学生总结出和(或差)的余数等于余数的和(或差)的余数。
【例2】 135********⨯⨯⨯⨯⨯的乘积除以8的余数是多少?【分析】 1,3,5,7,9,...,2007,2009除以8的余数分别为1,3,5,7,1,3,5,7, (1)3,5,7,1,1357⨯⨯⨯除以8的余数是1,所以135********⨯⨯⨯⨯⨯除以8的余数是1。
【温馨提示】这边可以帮助学生总结出积的余数等于余数的积的余数。
【拓展】 234199077777+++++的末两位是多少?【分析】 要求末两位,可以转化为求其除以100的余数是多少,7除以100余数是7,27除以100余数是49,37343=除以100余数为43,472401=除以100余数是1,54777=⨯除以100的余数是7,依此类推,余数是以7,49,43,1循环的,199044972÷=,所以所有余数的和是(749431)497749497+++⨯++=,49756除以100的余数是56,所以和的末两位是56。
5-5-3.同余问题教学,^-教学目标1.学习同余的性质2.利用整除性质判别余数知识点拨同余定理1、定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a三b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
2、重要性质及推论:(1)若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除例如:17与11除以3的余数都是2,所以(17-11)能被3整除.(2)用式子表示为:如果有a三b (modm ),那么一■定有a—b=mk,k是整数,即m 1(a—b)3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N被m除的余数”,我们希望找到一个较简单的数R,使得:N 与R对于除数m同余.由于R是一个较简单的数,所以可以通过计算R被m除的余数来求得N被m除的余数.⑴ 整数N被2或5除的余数等于N的个位数被2或5除的余数;⑵ 整数N被4或25除的余数等于N的末两位数被4或25除的余数;⑶ 整数N被8或125除的余数等于N的末三位数被8或125除的余数;⑷ 整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹ 整数N被7, 11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7, 11或13除的余数就是原数被7, 11或13除的余数.例题靛讲模块一、两个数的同余问题【例1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39-3=36 , 51-3=48, 147-3= 144 , (36,144) = 12, 12 的约数是1,2,3,4,6,12,因为余数为3 要小于除数,这个数是4,6,12 ;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51 -39= 12, 147-39= 108 , (12,108) = 12,所以这个数是4,6,12 .【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是 __ 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
同余定理分三类:口诀套用,化余为一,其他“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。
所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。
1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
【60后面的“n”请见4、,下同】2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
3、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。
4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
余数问题中的一个重要问题就是同余问题,在同余问题解决过程中,推荐代入法和口诀法两大类。
其中口诀法是公倍数做周期,余同取余,和同加和,差同减差的应用,但是有时候会出现余不同,和不同并且差也不同的现象,这就需要我们采用剩余定理进行解决。
剩余定理的原理比较繁琐,不如直接套用解题方法进行快速解题更能解决行测中的类似问题。
下面给出一些例题,对剩余定理的解题方法加以熟练:【例1】一个数被3除余1,被4除余2,被5除余4,这个数最小是多少?题中3、4、5三个数两两互质。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.【余数的加法定理】a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.【余数的乘法定理】a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数学运算题目是广大考生普遍认为的公务员行测考试中比较难的一类题目。
但事实上,并不是所有的数学运算题目都难,如果掌握了相应的题型和方法,还是挺简单的。
下面就教给大家一个快速解答数学运算题中余数、同余问题的解答方法——代入排除法。
代入排除法是指将题目的选项直接代入题干当中验证来判断选项正误的方法。
这是处理“客观单选题”非常行之有效的方法。
最典型的运用这种方法的题型之一就是余数、同余问题。
余数、同余问题,简单的说就是题目中涉及到余数的问题,题目中会明确的给出或者暗含“除以几余几”这样的信息。
余数、同余问题如果题干里说XX数字满足YY条件,最后问XX数字是多少,都直接用代入排除法。
【例1】15. 某生产车间有若干名工人,按每四个人一组分多一个人,按每五个人一组分也多一个,按每六个人一组分还是多一个,该车间至少有多少名工人? (2009年北京社招)A. 31 B. 41 C. 61 D. 122【答案】C【解析】题中的条件实际上是指工人总数除以4余1,除以5余1,除以6余1。
所以为同余问题,又求的是具体的数字,所以采用代入排除法求解。
A选项不满足除以4余1,B选项不满足除以6余1,D选项不满足除以6余1,所以答案肯定是C选项。
【例2】46.今有物不知其数,三三数之余一,五五数之余二,七七数之余三,此物至少有:(2010广西)A.37个B.52个C.97个D.157个【答案】B【解析】题中的条件实际上说的是所求数除以3余1,除以5余2,除以7余3。
所以为同余问题,又求的是具体的数字,所以采用代入排除法。
因为求的是至少,所以从最小的数开始代入,经验证,A选项不满足除以7余3,而B选项三个条件都满足,所以选B。
【例3】36.在一个除法算式里,被除数、除数、商和余数之和是319,已知商是21,余数是6,问被除数是多少?(2010年9月联考)A.237B.258C.279D.290【答案】C【解析】本题的关系是:被除数+除数=319-21-6=292,没有其他条件了,所以只能采用代入排除法求解。
同余问题解题技巧
同余问题是数论中的重要内容,解决它可以应用到大量的科学问题中。
本文介绍一种解决同余问题的技巧,以及与之相关的实例。
首先定义一些概念,以便理解同余问题的实质。
定义P、Q均
为正整数,如果存在正整数m,使得P*m=Q mod N,则称P
和Q模N具有同余性,记作P≡Q (mod N)。
解决同余问题的技巧很简单,具体来说就是首先找出所有满足
P*m=Q mod N的m,然后将这些m都加起来,如果结果是N
的整倍数,就说明P与Q是同余的。
举一个例子来说明该技巧的实际效果,假设我们要求P≡Q (mod 10),我们只需要找出所有满足P*m=Q mod 10的m即可,显然m=1,3,7都是符合要求的。
将这三个m加起来,结果11,因此P和Q就是同余的。
实际上,这种技巧可以扩展到求解多项式同余问题,并可以利用中国剩余定理来解决。
因此,在解决同余问题时,应当充分考虑各种情况,以便及时捕捉解题技巧,从而提高工作效率。
同余问题口诀的原理(实用版)目录1.同余问题的定义与基本概念2.同余问题口诀的原理3.同余问题的解法及应用举例4.总结与拓展正文一、同余问题的定义与基本概念同余问题是指在模运算下,两个或多个整数之间的关系。
若整数 a、b 除以整数 m,所得的余数相同,则称 a、b 对模 m 同余。
同余关系用符号“≡”表示,如 a≡b(mod m),读作“a 同余于 b 模 m”。
二、同余问题口诀的原理同余问题口诀,也被称为“同余定理”或“欧拉定理”,是数论中解决同余问题的重要方法。
其原理如下:若 a≡b(mod m),则 a^φ(m)≡b^φ(m)(mod m),其中φ(m) 表示模 m 的欧拉函数值,即小于等于 m 的与 m 互质的正整数的个数。
三、同余问题的解法及应用举例利用同余问题口诀,我们可以轻松地解决许多同余问题。
下面举一个典型的例子:问题:有一个自然数,用它分别去除 63、90、103,都有余数,且三个余数的和是 25。
这三个余数中最大的一个是多少?解:设这个自然数为 x,则根据题意可列出以下三个同余式:x ≡ 1 (mod 63)x ≡ 1 (mod 90)x ≡ 23 (mod 103)由同余问题口诀,我们有:x ≡ 1^φ(63) (mod 63)x ≡ 1^φ(90) (mod 90)x ≡ 23^φ(103) (mod 103)其中,φ(63) = 17,φ(90) = 18,φ(103) = 19。
因此,我们可以将原问题转化为求解以下三个同余式:x ≡ 1 (mod 63)x ≡ 1 (mod 90)x ≡ 23^19 (mod 103)解得 x = 63k + 1 = 90m + 1 = 103n + 23^19,其中 k、m、n 均为整数。
由于三个余数的和是 25,我们有:1 + 1 + 23^19 ≡ 25 (mod 103)即 23^19 ≡ 23 (mod 103)因此,最大的余数为 23。
本科毕业论文题目:同余方程的解法学生姓名:学号:专业:数学与应用数学班级:指导教师:二〇一年四月摘要:本文论述了同余方程的基本概念及同余方程的一些基本性质与解法,主要对一次同余方程的解法进行了探讨,特别是对一次同余方程的欧拉定理算法,欧几里德算法等七种解法进行了比较与分析,并介绍了同余方程组、孙子定理、素数模的同余方程,模p 的同余方程的解法。
关键词:同余同余方程孙子定理Abstract:This paper mainly discusses the basic concepts of congruence equations and congruence equation some of the basic nature of solution,and highlights the Remainder Theorem,solution of the congruence equation,mod p congruence equation solution,congruence equation of primes mode solution,etc.Key words:Congruence Congruence equation Remainder Theorem目录引言 (1)1.同余与同余方程的基本性质 (2)1.1 同余的概念与基本性质 (2)1.2同余方程的概念与性质 (3)2.一次同余方程的解法 (4)2.1 ()a=的情况 (4), m 12.2 ()=≠的情况 (7),1a m d3.同余方程组的解法 (8)3.1简单同余方程组的解法 (8)3.2 孙子定理 (9)4.高次同余方程的的解法 (11)4.1素数模的同余方程 (11)4.2模pα的同余方程 (12)总结: (17)参考文献 (18)致谢: (19)引言对于同余方程的解法国内外的数学家们均对其做出了非常全面与细致的研究。
同余方程的解法同余方程是数论中的重要内容,研究同余方程的解法对于解决一些数学问题具有重要的意义。
本文将介绍同余方程的求解方法及其应用。
一、基本概念在开始讨论同余方程的解法之前,我们先来了解一些基本概念。
1. 同余关系:设a、b、m是整数,如果m能整除(a-b),即(a-b)是m 的倍数,则称a与b同余,记作a≡b(mod m)。
2. 同余方程:形如ax≡b(mod m)的方程称为同余方程,其中a、b、m是已知整数,x是待求的整数。
二、同余方程的解法解同余方程的关键是找到满足条件的整数解。
下面将介绍三种常见的解法。
1. 试错法:通过尝试不同的整数值,检验是否满足同余关系来求解同余方程。
当方程较简单时,这种方法可以很快得到解。
但对于复杂的方程,试错法并不是一个高效的解题方法。
2. 求模逆法:对于一些特定的同余方程,可以通过求解模逆来得到解。
若a存在模逆,即存在整数a',使得aa'≡1(mod m),则同余方程ax≡b(mod m)的解为x≡ba'(mod m)。
3. 扩展欧几里德算法:对于一般的同余方程,可以利用扩展欧几里德算法来求解。
该算法可以求解形如ax+my=gcd(a,m)的线性方程,进而得到同余方程的解。
三、同余方程的应用同余方程是数论的重要工具,在密码学、编码理论、计算机科学等领域有广泛的应用。
1. 密码学:同余方程在RSA加密算法中起到了关键作用。
RSA算法依赖于大素数因子分解的困难性,而同余方程的求解正是对此问题的解答。
2. 编码理论:同余方程可以用于解码、纠错码的设计以及信息传输中的误差检测和纠正等方面。
3. 计算机科学:同余方程在计算机科学中有着广泛的应用,例如在计算机图形学中用于生成伪随机数、在计算机网络中用于数据包分组与重组等。
四、总结同余方程作为数论中的一个重要内容,具有重要的理论和应用价值。
本文介绍了同余方程的基本概念、解法以及一些应用领域。
了解并掌握同余方程的求解方法,对于深入理解数论以及解决实际问题具有重要的意义。
同余的运算法则全文共四篇示例,供读者参考第一篇示例:同余的概念最早出现在数论领域,是一种描述整数间的模运算关系的数学概念。
同余的运算法则涉及到模运算的一系列性质和规律,对于解决一些数论问题和密码学中的加密算法起着至关重要的作用。
本文将介绍同余的概念及其运算法则,并讨论其在数学和应用方面的重要性。
1. 同余的定义在数论中,我们通常使用符号“≡”表示同余关系。
如果两个整数a和b除以一个正整数m的余数相等,即a除以m和b除以m的余数相等,我们就说a与b关于模m同余,记为a≡b(mod m)。
简单来说,同余就是指两个数除以同一个数的余数相等。
12和22关于模5同余,因为12除以5的余数为2,22除以5的余数也为2,即12≡22(mod 5)。
2. 同余的运算法则在模运算中,同余有着一系列的运算法则。
我们可以根据这些法则来简化模运算的计算,并处理一些复杂的数论问题。
(1)同余的传递性如果a≡b(mod m)且b≡c(mod m),那么可以推出a≡c(mod m)。
这就是同余关系的传递性,即如果两个数与同一个模同余,那么它们之间也是同余的。
举例来说,如果5≡15(mod 10)且15≡25(mod 10),那么可以推出5≡25(mod 10)。
(2)同余的对称性和反对称性(3)同余的加法和乘法性质对于同余关系来说,加法和乘法都具有良好的性质。
(4)同余的幂运算性质如果a≡b(mod m),那么对于任意正整数n,有a^n≡b^n(mod m)。
即同余数的幂运算后依然同余。
(5)同余的逆元如果a在模m下存在逆元,即存在整数b使得ab≡1(mod m),那么我们称b是a的逆元。
对于素数模m来说,任意整数a在模m下都有逆元。
同余的概念在数论和密码学领域有着广泛的应用。
(1)同余在数论中的应用在数论中,同余可以用来证明一些整数性质和解决一些数论问题。
在证明费马小定理和欧拉定理等定理时就会用到同余的性质。
在密码学中,同余的概念有着重要的应用。
同余法解二元一次方程
同余法是一种解决二元一次方程的方法,它可以帮助我们找到
方程的整数解。
在这篇文章中,我们将介绍同余法的基本原理和解
题步骤。
首先,让我们来看一个简单的二元一次方程,ax ≡ b (mod m),其中a、b和m都是整数,m大于0。
这个方程的意思是,当ax除以
m的余数等于b除以m的余数时,我们称x是这个方程的解。
现在,我们来看一下如何使用同余法来解这个方程。
首先,我
们需要计算a的逆元。
如果a和m互质,即它们的最大公约数为1,那么a关于模m的逆元一定存在。
我们可以使用扩展欧几里得算法
来求解a关于模m的逆元。
假设a关于模m的逆元为a',那么方程
的解可以表示为x ≡ a'b (mod m)。
接下来,我们可以通过计算a'和b的乘积再对m取模来求得x
的值。
这样我们就得到了方程的解。
让我们通过一个具体的例子来说明同余法的应用。
假设我们要
解方程3x ≡ 2 (mod 7)。
首先,我们需要计算3关于模7的逆元。
通过扩展欧几里得算法,我们可以得到3关于模7的逆元为5。
然后,我们可以计算x的值,即x ≡ 52 (mod 7),最终得到x ≡ 3 (mod 7)。
因此,方程3x ≡ 2 (mod 7)的解为x ≡ 3 (mod 7)。
通过上面的例子,我们可以看到同余法是一种简单而有效的方法来解决二元一次方程。
它可以帮助我们找到方程的整数解,特别是在模运算的情况下。
希望本文对同余法的理解有所帮助。
初中数学48个解题模型数学是一门需要理解和掌握的学科,而解题模型则是数学学习中非常重要的一部分。
解题模型是指在解决数学问题时,根据问题的特点和要求,采用合适的方法和步骤,运用数学知识进行分析、计算和推理的一种解题方式。
在初中数学学习中,掌握一定的解题模型,可以更好地提高数学解题的能力和效率。
下面,我们将介绍初中数学中常用的48个解题模型,其中包括了初中数学的各个方面,希望对初中数学学习有所帮助。
1. 等式变形模型:根据等式变形的性质,对等式进行变形,使其更加简单易解。
2. 分式化简模型:根据分式化简的原理,对分式进行化简,使其更加简单易解。
3. 去括号模型:根据去括号的原理,将括号内的式子进行展开,使其更加简单易解。
4. 合并同类项模型:根据合并同类项的原理,将同类项进行合并,使其更加简单易解。
5. 因式分解模型:根据因式分解的原理,将式子进行因式分解,使其更加简单易解。
6. 基本不等式模型:根据基本不等式的原理,对不等式进行变形,使其更加简单易解。
7. 二次函数解析式模型:根据二次函数解析式的原理,求出二次函数的解析式。
8. 三角函数解析式模型:根据三角函数解析式的原理,求出三角函数的解析式。
9. 解方程模型:根据解方程的原理,对方程进行变形,求出方程的解。
10. 解不等式模型:根据解不等式的原理,对不等式进行变形,求出不等式的解。
11. 平面几何基本定理模型:根据平面几何基本定理的原理,对几何问题进行求解。
12. 空间几何基本定理模型:根据空间几何基本定理的原理,对几何问题进行求解。
13. 三角形的性质模型:根据三角形的性质,对三角形问题进行求解。
14. 相似三角形模型:根据相似三角形的原理,对相似三角形问题进行求解。
15. 同余模型:根据同余的原理,对同余问题进行求解。
16. 勾股定理模型:根据勾股定理的原理,对勾股定理问题进行求解。
17. 三角函数基本关系式模型:根据三角函数的基本关系式,对三角函数问题进行求解。
同余方程解法例题同余方程是数学中最著名的内容之一,它有着重要的地位。
在解决数学问题时,经常会用到同余方程来求解,从而获得客观的结果。
本文将着重介绍同余方程的概念及其解法,以及使用此解法解决实际问题的实例,旨在帮助读者更好地理解并使用同余方程的解法。
2余方程的定义所谓“同余”,即指两个数之间的比率为固定的数值,其关系用数学语言表示如下:若存在整数m,n且m≠0,则称对任意整数a,b满足以下条件: a b (mod m)若m=1,则所有数字都满足此条件,即所有数字都“同余”,故称可用以上公式描述的关系为“同余方程”。
3余方程的解法由定义可知,同余方程是一种又称为“模运算”的特殊运算。
其通用的解法可以分为以下四步:1.‘a b (mod m)’用加减乘除运算转换为‘a=mk+b’的形式,即完全平方形式;2.‘a=mk+b’形式拆解成‘a=x*m+y’,此时通常会有两种情况: 1)当m与b互质时,可以利用扩展欧几里得算法,利用反模法求出x,y的整数解;2)当m与b不互质时,可以使用中国剩余定理求出满足条件的x,y。
3.x,y得到a,b;4.查a,b是否满足同余方程。
4例分析本节将以实例来详细讨论同余方程的解法,实例详解如下:例题:(1)求104×x+103 -1 (mod 105)的解;(2)求23×x+22 5 (mod 7)的解。
(1)首先将该同余方程整理为完全平方形式:104×x+103 = 106-1;此时105与-1互质,使用扩展欧几里得算法,求解出x=-2,y=107;因此,有x=-2,y=107,从而a=-104×(-2)+103=-207, b=-1;因此,答案为:104×(-2)+103 -1 (mod 105);(2)首先将该同余方程整理为完全平方形式:23×x+22 = 7×3+5;7与5互素,可以采用中国剩余定理求解,假设当x≡p (mod 7)时,23×x+22 5 (mod 7)有解;由此,可以得到:23p-37的倍数,也即23p 3 (mod 7);令23p-3=7k,可得:p=3k+3;解出p=3k+3,则x=3k+3,y=3;因此,有x=3k+3,y=3,从而a=23×(3k+3)+22=69k+65, b=5;因此,答案为:23×(3k+3)+22 5 (mod 7)。
同余问题三种类型例题同余问题是离散数学中的一类重要问题,涉及到整数的除法运算和求余操作。
在同余问题中,通过对一个整数进行除法运算,我们可以得到一个余数,根据这个余数和被除数之间的关系,可以得到不同类型的同余问题。
下面将介绍三种常见的同余问题类型,并且给出一些详细的例题。
1. 线性同余问题线性同余问题是指寻找一个整数x,满足以下同余关系式:ax ≡ b (mod n)其中a,b,n为已知整数,且n>0。
我们需要求解的是x的取值范围。
这个问题可以用来求解模方程的解集。
例题1:解方程2x ≡ 6 (mod 5)。
根据同余关系式,我们可以得到2x可以被5整除的余数必须等于6。
我们可以列出等价的方程组:2x = 6 + 5k,其中k为整数。
这是一个一次方程,我们可以通过分析得到x=3+5k/2,其中k为整数。
根据这个结果,我们可以得到x的取值范围为3,8,13,18……。
2. 同余方程问题同余方程问题是指寻找一个整数x,满足以下同余关系式:f(x) ≡ c (mod n)其中f(x)为一个与x相关的函数,c,n为已知整数,且n>0。
我们需要求解x的取值范围。
例题2:解方程x^2 ≡ 4 (mod 7)。
要解这个方程,我们需要找到满足x^2-4可以被7整除的x。
我们可以将x^2-4分解为(x-2)(x+2),即(x-2)(x+2)≡0 (mod 7)。
得到x的取值可以为2,-2,9,-9……。
3. 同余定理问题同余定理问题是指通过对一个整数进行特定的除法运算,来得到该数的同余类。
同余类是将整数分成若干个互相不交、互相等价的集合。
同余问题中的同余定理有欧拉定理、费马小定理等。
例题3:使用费马小定理求解:3^41 ≡ ? (mod 7)。
费马小定理为如果a是整数,p是质数且a和p互质,则a^(p-1) ≡ 1 (mod p)。
根据给定的问题,我们可以将3^41分解为(3^7)^5 * 3^6,即(3^7)^5 * 3^6 ≡ 1^5 * 3^6 ≡ 729 ≡ 2 (mod 7)。
第十五讲同余法解题
一、知识要点
在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,52÷24=2……4,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1、同余的表达式和特殊符号:37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:37≡44(mod7),“≡”读作同余。
一般地,两个整数A
和B,除以大于1的自然数M所得的余数相同,就称A、B对于模M同余,记作:A≡B(modM) 2、同余的性质
(1)A≡A(modM)(每个整数都与自身同余,称为同余的反身性。
)
(2)若A≡B(modM),那么B≡A(modM)(这称作同余的对称性)
(3)若A≡B(modM),B≡C(modM),则A≡C(modM)(这称为同余的传递性)
(4)若A≡B(modM),C≡D(modM),则A±C≡B±D(modM)(这称为同余的可加性、可减性)则A×C≡B×D(modM)(称为同余的可乘性)
(5)若A≡B(modM),则A n≡B n (modM),n为正整数,同余还有一个非常有趣的现象:如果A≡B(modM),那么M|(A-B)(A-B的差一定能被M整除),这是为什么呢?
3、同余口诀:“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。
1)、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
2)、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
3)、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。
4)、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n )都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
二、精典例题
例1:有8只盒子,每只盒子内放有同一种笔。
8只盒子所装笔的支数分别为17、23、33、36、38、42、49、51支。
在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔的支数是铅笔支数的3
1,只有一只盒子里放的是水彩笔。
这盒水彩笔共有多少支? 【解析】“钢笔的支数是铅笔支数的3
1”可换为“铅笔的支数是钢笔的支数的3倍”,那么圆珠笔、铅笔、钢笔的总和一定是6的倍数,8盒一共有289支,因为289÷6=48……1,所以水彩笔的支数除以6一定余1,故只能是49支。
例2、 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?
【解析】假设这个自然数是a ,因为412、133和257除以a 所得的余数相同,所以a |(412-133),a |(412-257),a |(257-133),说明a 是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
(155,124,279)=31,所以a 最大是31。
例3、 249×388×234除以19,余数是几?
【解析】如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
因为249≡2(mdo19), 388≡8(mdo19),234≡6(mdo19),
所以249×388×234≡2×8×6≡1(mdo19)
此题应用了同余的可乘性,同余的传递性。
例4、 有一个1997位数,它的每个数位都是2,
这个数除以13,商的第100
位是几?最后余数是几? 【解析】这个数除以13,商是有规律的。
商是170940六个数循环,那么,即,我们从左向
右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。
余数是几呢?
则
所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。
三、练习题
1. 求下列算式中的余数。
(1)(2)
(3)(4)
2. 6254与37的积除以7,余数是几?
3. 如果某数除482,992,1094都余74,这个数是几?
4、300、262、205被同一个整数除,得到相同的余数,这个整数是几?
5、一个自然数被247除余 63,被248除余63,求这个自然数被26除的余数。
6、一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被4除余3,被3除余2,被2除余1,求N的最小值。
7、两个数除以11分别余9和10,这两个数的和除以11余几?
8、甲、乙、丙三个数之和是100,甲数除以乙数,或丙数除以甲数,得数都商5余1,乙数是多少?
9、求下列各式的余数。
(1) 2123÷6 (2)4848÷5。