小学奥数训练第38周同余法解题
- 格式:doc
- 大小:45.50 KB
- 文档页数:5
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【例 3】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 4】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 5】两位自然数ab与ba除以7都余1,并且a b⨯.>,求ab ba【例 6】现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。
小学奥数同余的解题规律知识小学奥数同余的解题规律知识在作除法运算时,我们有这样的经验:(1)一些不同的数除以一个相同的数可能会得到相同的余数.如,除以5余3的数有5×1+3=8,5×2+3=13,5×3+3=18,5×4+3=23,…………(2)一个相同的数除以一些不同的数,可能会有相同的余数.如,389分别除以5、7和11会得到相同的余数4.389÷5=77 (4)389÷7=55 (4)389÷11=55 (4)由此,我们可以来讨论下面的两个问题.某数被5除余4,被7除也余4,被11除还余4.要求某数和某数最小是多少?读者一定会想到有:5×7×11+4=389,5×7×11×2+4=774,5×7×11×3+4=1159,…………答案有无数多个,但最小的.只能是389.现在,我们把这个问题上升到一般形式.问题一某数分别除以a、b、c、……,都得到相同的余数k.求某数最小是多少?聪明的读者,能得出答案吗?需要请读者注意的是,382、767、1152分别除以5、7和11所得的余数2、4、8,虽然都不相同,但是都与相应的除数相差同样多.即5-2=3,7-4=3,11-8=3.于是,我们也可以提这样的问题:某数被5除余2,被7除余4,被11除余8.问某数是多少和某数最小是多少?读者一定会想到是5×7×11×1-3=382,5×7×11×2-3=767,5×7×11×3-3=1152,…………答案有无数多个,但最小只能是382.这个问题的一般形式是:问题二某数分别除以a、b、c、……得数相应的余数分别是A、B、C、……,并且,这些余数跟相应的除数都相差同样多(也设为k),即a-A=b-B=c-C=……=k. 求某数最小是多少?聪明的读者,能得出答案吗?【规律】某数分别除以a、b、c、……,都得到相同的余数k.求某数最小是多少?答案是[a,b,c,……]+k.某数分别除以a、b、c、……,得到相应的余数A、B、C、……,并且这些余数跟相应的除数都相差同样多(设为k),即a-A=b-B=c-C=……=k.求某数最小是多少?答案是[a,b,c,……]-k.【练习】1.某数分别除以3、5和7,都有相同的余数2.求某数最小是多少?(2除外)2.某数被5、6、7除,都得到相同的余数1.问某数在1000以内有哪几个答案?3.某数用5除余3,用7除余5,用9除余7,用11除余9.求某数最小是多少?4.某数分别用5、7、9和11除,刚好都是差3才能整除.求某数最小是多少?5.某数被2000除,余1993;被1999除,余1992;被1998除,余1991.求某数最小是多少?。
小学奥数-巧解整除中的同余问题1.整数a除以整数b(b≠0),商是整数而没有余数,我们就说a 能被b整除,b能整除a。
2.a与b的和除以c的余数,等于a、b分别除以c的余数之和除以c的余数。
3.a与b的乘积除以c的余数,等于a、b分别除以c的余数的积除以c的余数。
4.若两个数a、b除以同一个数m得到的余数相同,则a、b的差一定能被m整除。
5所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称做同余问题。
精讲1:甲、乙两数的和是1088,甲数除以乙数得商11余32,求甲、乙两数。
分析:解答这样的问题,首先要根据除法的意义,理顺被除数、除数、商和余数之间的关系,即被除数=商×除数+余数。
因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088。
解:乙=(1088-32)÷(11+1)=88 甲=1088-88=1000精讲2:求478×296×351除以17的余数。
分析:先求出乘积再求余数,计算量较大,可以根据同余定理“a 与b的乘积除以c的余数,等于a,b分别除以c的余数的积除以c的余数”,先分别计算出各因数除以17的余数,再求出余数之积除以17的余数。
解:478÷17=28 (2)296÷17=17 (7)351÷17=20 (11)2×7×11÷17=9 (1)精讲3:有一个大于1的整数,除45、59、101所得的余数相同,求这个数。
分析:根据同余定理“若两个数a、b除以同一个数m得到的余数相同,则a、b的差一定能被m整除”,我们可以得到:这个数一定能整除这三个数中任意两数的差,也就是说它是任意两数差的公约数。
解:101-45=56 59-45=14 (56,14)=1414的约数有1、2、7、14,所以这个数可能为2、7、14。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
同余问题的奥数题同余问题是一个数学中的问题,它涉及到整数除以某个数后的余数的性质和关系。
具体来说,给定一个整数n和一个正整数m,同余问题就是研究关于a 的同余方程a ≡b (mod m) 的性质和解的情况。
其中,a是被除数,b是余数,"≡"表示同余关系,即a除以m的余数等于b,而mod表示取模运算。
这个问题可以进一步扩展为求解满足特定条件的整数解的数量或者找到所有满足条件的整数解等。
以下是一些常见的同余问题奥数题:1. 一个数除以5的余数是4,除以6的余数是3,除以7的余数是2,求这个数是多少?解答:我们可以使用中国剩余定理来解决这个问题。
首先,我们设这个数为x,则有x ≡4 (mod 5),x ≡3 (mod 6) 和x ≡2 (mod 7)。
根据中国剩余定理,我们有:x = 5 * k1 + 6 * k2 + 7 * k3,其中k1、k2、k3是整数。
由于5、6和7互质,所以可以分别求解得到:k1 = (4 - 2) / 5 = 0k2 = (3 - 0) / 6 = 1/2k3 = (2 - 0) / 7 = 2/7将k1、k2和k3代入x的表达式中,得到x = 5 * 0 + 6 * (1/2) + 7 * (2/7) = 19。
所以这个数是19。
2. 求方程x^2 - y^2 = 1999的所有正整数解。
解答:我们可以使用费马小定理来解决这个问题。
根据费马小定理,如果p 是一个素数且a是模p的一个原根,那么a^(p-1) ≡1 (mod p)。
在本题中,我们考虑模p=n,即要求满足x^2 - y^2 = n的正整数解的数量。
根据费马小定理,有:当n是完全平方数时,若n的质因数分解形式为p^2,且存在整数a使得a^((p-1)/2) ≡±1 (mod p),则n有一个非平凡的正整数解;当n不是完全平方数时,不存在满足条件的正整数解。
对于本题中的n=1999,它是一个完全平方数,因为1999 = 13 * 153。
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
精心整理同余问题(一)???在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1.同余的表达式和特殊符号???37??????同余,2.???(???((这称作同余的对称性)???(,则(这称为同余的传递性)???(,,则()(这称为同余的可加性、可减性)???(称为同余的可乘性)???()若,则,???如果???那么(的差一定能被??????k也就是的公约数,所以有???下面我们应用同余的这些性质解题。
【例题分析】例1.用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几????分析与解答:???假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
???所以a最大是31。
例2.除以19,余数是几????分析与解答:???如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
???所以???此题应用了同余的可乘性,同余的传递性。
例3.有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几????分析与解答:??????,即??????则1.???()???()?????????????)3.【例题分析】例1.???例2.一个自然数除以3余2,除以5余3,除以7余1,这个自然数最小是几?分析:假设这个自然数为a那么这道题考虑的困难是它们的余数不相同。
如果把这道题改一下,使它们的余数相同,利用整除的知识,便容易考虑了,先看下面一道题:一个自然数除以3余2,除以5余2,除以7余2,那么,这个自然数若减去2,便同时是3,5,7的倍数,这样的自然数有:105,210,315,……分别被3,5,7除余2的数是2,107,212,317,……最小的自然数是2。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
第38周同余法解题
专题简析
同余这个概念最初是由德国数学家高斯发明的。
同余的定义是这样的:
两个整数a,b如果它们除以同一个自然数m所得的余数相同,则称a,b对于模m同余。
记作:a≡b(mod m)。
. .读作:a同余于b模m。
比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记作,12=47(mod 5)。
同余的性质比较多,主要有以下几个。
性质1:对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。
比如32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。
“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。
也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示放是:32≡2(mod 5) ,19≡4(mod 5) ,32+19≡2+4≡1 {mod 5).
性质2:对于同一个除数,两个数的乘积与它们余数的乘积同佘。
性质3:对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
性质4:对于同一个除数,如果有两个整数同余,那么它们的乘方仍然同余。
应用同性质解题的关键是要在正确理解的基础上灵活运用同余性质。
把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单。
王牌例题1
求1992×59除以7的余数。
【思路导航】应用同余性质2可将1992×59转化为求1992除以7和59除以7的余数的乘积,使计算简化。
1992除以7余4,59 除以7余3。
根据同余性质,“4×3”除以7的余数与“1992×59”除以7的余数应该是相同的,通过求“4×3”除以7的余数就可知道 1992×59除以7的余数了。
因为 1992×59≡4×3≡5(mod 7),
所以1992×59除以7的余数是5。
举一反三1
1. 求4217×364除以6的余数。
2. 求1339655×12除以13的余数。
3. 求879×4376×5283除以11的余数。
王牌例题2
已知2002年的国庆节是星期二,求2011年的国庆节是星期几?
【思路导航】一星期有7天,要求2011年的国庆节是星期几,就要求从2002年的国庆节到2011年的国庆节的总天数被7除的余数就行了。
但在实际计算中,如果我们能充分利用同余性质,就可以不必算出这个总天数。
2002年国庆节到2011年国庆节之间共有2个闰年7个平年, 即有(366×2+365×7)天。
366×2≡2×2≡4(mod 7),365×7≡1 ×0≡0(mod 7), 366 ×2 + 365 ×7 ≡ 2×2 + l×0 ≡4 + 0 ≡4(mod 7)。
答:2011年的国庆节是星期六。
举一反三2
1. 已知2002年元旦是星期二,求2008年元旦是星期几?
2. 已知2002年的7月1日是星期一,求2015年的10月1日是星期几?
3. 今天是星期四,再过36515天是星期几?
王牌例题3
求20012003除以13的余数。
【思路导航】2001除以13余12,即2001≡12(mod 13)。
根据同余性质4,可知20012003三122003 (mod 13),但122003仍然是一个很大的值,要求它的余数比较困难。
这时的关键就是要找出12的几次方对模13与1是同余的。
经试验可知122≡1(mod 13),而2003≡2 × 1001 + 1,所以(122 )1001≡ 1 1001 (mod 13 ),即 122002≡ (mod 13),而 122003≡122002× 121。
根据同余性质 2 可知 122002× 121≡l×12≡12(mod 13)。
因为 20012003≡122003 {mod 13),
122≡l{mod 13),而 2003=2×1001+1,
122003≡(122)1001×121≡1×12=12(mod 13),
所以20012003除以13的余数是12。
举一反三3
1. 求16200除以13的余数。
2. 求392除以21余几。
3. 9个小朋友坐成一圈,要把357粒瓜子平均分给他们,最后剩下几粒?
王牌例题4
自然数16520,14903,14177除以m的余数相同,m最大是多少?
【思路导航】自然数16520,14903,14177除以m的余数相同,换句话说就是16520≡14903≡14177(mod m)。
根据同余性质3,这三个数同余,那么它们的差就能被m整除。
要求m 最大是多少,就是求它们差的最大公因数是多少?
165 20-149 03=16 1 7 = 3 × 72×11
16520—14177=2343=3×11×71
14903-14177=726=2×3×112
设这些差的公因数是m,m最大是3× 11 = 33。
举一反三4
1. 若2836,4582,5164,6522四个整数都被同一个两位数相除,所得的余数相同。
除数是多少?
2. 一个整数除226,192,141都得到相同的余数,且余数不为 0,这个整数是多少?
3. 当1991和1769除以某一个自然数別时,佘数分别为2和1,那么m最小是多少?
王牌例题5
某数用6除余3,用7除余5,用8除余1。
这个数最小是多少?
【思路导航】我们可从较大的除数开始尝试。
首先考虑与1模 8同余的数,9≡l(mod/ 8),但9除以7余数不是5,所以某数不是9。
17≡1(mod 8),17除以7余数也不是5。
25≡1(mod 8),25除以7余数也不是5。
33≡1 (mod 8), 33除以7余数正好是5,而且 33除以6余数正好是3,所以这个数最小是33。
上面的方法实际是一种列举法,也可以简化为下面的过程:
被 8 除余 1 的数有:9,17,25,33,41,49,57,65,73,81,89,…;其中被7除余5的数有:33,89,…。
这些数中被6除余3的数,最小是33。
举一反三5
1. 某数除以7余1,除以5余1,除以12余9。
这个数最小是多少?
2. 某数除以7余6,除以5余1,除以11余3,求此数的最小值。
3. 在一个圆圈上有几十个孔(如图38 — 1所示),小明像玩跳棋那样从A孔出发沿逆时针方向每隔几个孔跳一步,希望一圈以后能跑回A 孔,他先试着每隔2个孔跳一步,结果只能跳到B 孔。
他又试着每隔4个孔跳一步,也只能跳到B 孔。
最后他每隔6个孔跳一步,正好跳回A孔。
问:这个圆圈上共有多少个孔?
第38周
举一反三1
1. 4217 ×364≡5×4≡2(mod 6)
2. 1339655×12≡5×12≡8(moJ 13)
3. 879×4376×5283≡ 10×9×3≡6(mod 11)
举一反三2
1.所以 2008 年元旦也是星期二。
2•所以2015年的10月1日是星期四。
3.星期五。
举一反三3
1. 9。
2. 9。
3. 8粒。
举一反三4
1. 4582-2836=1746=2×97×32 5164-4582=582=2×97×3 6522—5164=1358=2×97×7因为除数是两位数,所以除数应是97。
2. 226—192=34=17×2 226-141 = 85 = 17×5 192-141 = 51 = 17×3
因为余数不为0,所以求的应是34,85,51的不为1的公因数,所以这个整数是17。
3. 假设余数都是2,那么这两个数就是1991和1770,由于1991和1770同余,肌就能整除它们的差。
1991 —1770 = 221 = 13 × 17,经检验,m最小是13。
举一反三5
1.除以7余1,除以5余1,则这个数除以35也余1,符合条件的数有36,71, 106,141,176,210,…,其中除以12余9的数最小是141。
3.每隔2个孔跳一步,结果跳到B孔,换句话说就是被3除余1。
每隔4孔跳一步,结果跳到B孔,就是被5除余1。
每隔6个孔跳一步,正好跳回A 孑L,就是被7整除。
满足以上条件的两位数(题中要求是几十个孔)是91。
所以圆圏上共有91个孔。