25.2.2用列举法求概率(第二课时)
- 格式:ppt
- 大小:840.00 KB
- 文档页数:14
25.2.2列举法求概率(二)三步概率自主导学当一次试验涉及________________的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用________________.(1)使用条件:可能出现的结果较多、有限、各种结果出现的可能性________________.(2)适用范围:一次试验要涉及________________因素.(3)具体方法:先画出第一个因素产生的________________,再在第一步的每个可能结果的分支上画出________________产生的可能结果,以此类推.易错点晴一家医院准备接生3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴,2个女婴的概率是多少?A夯实基础1.同时投掷三枚均匀硬币,至少有两枚正面向上的概率是()A. 38B.58C.23D.122.某班同学同时到A,B两地开展数学活动,每位同学由抽签确定去其中一个地方,则甲、乙、丙三位同学中恰好有两位同学抽到去B地的概率是________________.3.三名同学同一天生日,她们做了一个游戏,买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则他们拿到的贺卡都不是自己所写的概率是________________.4.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.5.小明、小刚和小红打算在各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩. (1)小明和小刚都在本周日上午去游玩的概率为________________.(2)求他们三个在同一个半天去游玩的概率.B综合运用6.甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有1个红球和2个白球;丙袋中装有2个白球,这些球除颜色外都相同.从这3个袋中各随机地取出1个球.(1)取出的3个球恰好是2个红球和1个白球的概率是多少?(2)取出的3个球全是白球的概率是多少?.7.甲、乙、丙三人打乒乓球,由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,问一次比赛能淘汰一人的概率是多少?C拓广探索8.经过某十字路口的汽车,它可能继续直行,也可能向左转向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时,(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率为310,目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.。
25.2 用列举法求概率(第二课时)教学目标:1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。
2.会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。
3.体验数学方法的多样性灵活性,提高解题能力。
教学重点:正确理解和区分一次试验中包含两步的试验。
教学难点:当可能出现的结果很多时,简洁地用列表法求出所有可能结果。
一、比较,区别出示两个问题:1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的元素不一样。
二、问题解决1.例1 教科书第150页例4。
要求学生思考掷两枚硬币产生的所有可能结果。
学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因。
列出了所有可能结果后,问题容易解决。
或采用列表的方法,如:让学生初步感悟列表法的优越性。
2.问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的。
比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关。
同时投掷两枚硬币时就不会出现这样的问题。
3.课内练习:书本P151的练习。
三、小结1.本节课的例题,每次试验有什么特点?2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏。
四、布置作业:教学反思:___________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________。
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。
这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。
通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。
但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。
四. 教学重难点1.重点:列举法求概率的方法及运用。
2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。
4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.练习题:准备一些相关练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
“因学施教、三三达标”九年级数学简明学案第二十五章概率初步25.2用列举法求概率(第2课时)【学习目标】1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。
2.会用列表法求出上述试验出现的所有可能结果,再利用古典概型的定义求得概率。
【学习过程】一、问题引入:1、掷一枚质地均匀的硬币,有几种可能的结果?2、先后掷两枚硬币,又有几种可能的结果呢?结果是由几个因素确定的?3、“先后掷两枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗?二、自主学习:自学课本150页例4,回答下列问题:1、“正反”与“反正”为什么是两种不同的结果?2、“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?3.完成课本151页上面的练习。
三、经典例题:例5:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数的和是9;(3)至少有一个骰子的点数为2。
分析:影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?用什么样的办法才能不重不漏的列举出所有可能出现的结果?试把所有可能的结果列举在下面的表格中:上面表格中的每个单元格中的结果等可能吗?试以上表为工具解答本题:变式:如果本题中“同时掷两个骰子”改为“把一个骰子先后掷两次”,所得的结果有变化吗?拓展:在什么前提下可以象本例一样借助列表法求概率?应如何列表?四、练习:1、在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?2、第155页第4题、第8题。
五、总结反思:【达标检测】1、两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是。
2、如图,小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。
3、袋子中装有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球后放回,再随机摸出一个,求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于4。