人教版-数学-九年级上册- 用列举法求概率 同步练习
- 格式:doc
- 大小:200.50 KB
- 文档页数:4
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
2023-2024学年九年级数学上册《第二十五章用列举法求概率》同步练习带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰2.下列事件中,属于随机事件的是()A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.在三张分别标又数字2、4、6的卡片中摸两张,数字和是偶数3.一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是8的概率是A.B.C.D.4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.一个不透明的盒子中装有个红球,个白球和个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为()A.B.C.D.7.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.8.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大二、填空题:(本题共5小题,每小题3分,共15分.)9.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.10.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机地选择一条路径,则它获得食物的概率是.11.)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是.12.在六张完全相同的卡片上,分别画有圆、矩形、菱形、等边三角形、直角三角形、正六边形,现从中随机抽取一张卡片,既是中心对称图形又是轴对称图形的概率是.13.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为.三、解答题:(本题共5题,共45分)14.从3名八年级男生和n名九年级男生中任选1名参加市第十二届运动会,其中选出学生为九年级男生的概率为,则n的值是多少?15.如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(一个转盘转出“红”,另一个转盘转出“蓝”,则为配成紫色).在所给转盘中的扇形里,分别填上“红”或“蓝”,使得到紫色的概率是 .16.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?17.小米准备了五张形状、大小完全相同的不透明卡片,上面分别写有整数﹣5,﹣4,﹣3,﹣2,﹣1,将这五张卡片写有整数的一面向下放在桌面上.(1)从中任意抽取一张,求抽到的卡片数字为偶数的概率(2)从中任意抽取一张,以卡片上的数作为不等式ax+3>0中的系数a,求使该不等式有正整数解的概率.18.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,游戏工具是一个可绕轴心自由转动的圆形转轮,转轮按圆心角均匀划分为20等份,并在其边缘标记5、10、15、...、100共20个5的整数倍的数.选手依次转动转轮,每个人最多有两次机会,选手转动的数字之和最大且不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?参考答案:1.D 2.B 3.B 4.D 5.D 6.B 7.B 8.D9.10.11.12.13.14.由题意得:解得:n=10答:n的值是1015.解:如图,一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其它色. (注:一个填两个“红”,另一个填三个“蓝”等也可)16.解:(1)∵从中随意摸出一个球的所有可能的结果个数是5随意摸出一个球是红球的结果个数是2∴从中随意摸出一个球,摸出红球的可能性是.(2)设需再加入x个红球.依题意可列:解得x=1检查,将x=1代入分式方程,符合题意。
用列举法求概率第1课时 直接列举法求概率 [见B 本P54]1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( A ) A.14 B.13 C.12 D.232.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.她第一次就拨通电话的概率是( C ) A.12 B.14 C.16 D.183.若从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为( A ) A.12 B.34 C.13 D.14【解析】∵从长度分别为3,5,6,9的四条线段中任取三条的可能结果有:3,5,6;3,5,9;3,6,9;5,6,9;能组成三角形的有:3,5,6;5,6,9;∴能组成三角形的概率为12.4.在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后,然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是__29__.5.从1,2,3,4,5中任取一个数作为十位上的数,再从2,3,4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是__13__.【解析】 所组成的所有两位数为12,13,14,22,23,24,32,33,34,42,43,44,52,53,54,共15种情形,其中是3的倍数的有12,24,33,42,54,共5种情形,∴P =515=13.6.小红有A ,B ,C ,D 四种颜色的衬衫,又有E ,F 两种颜色的裤子,若他喜欢的是A 衬衫配E裤子,则黑暗中,她随机拿出一套恰好是她最喜欢的搭配的概率是__18__.7.一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表的方法,求出两次摸出的球上的数字之和为偶数的概率. 解: 列表(第二次 和第一次1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出球上的数字之和为偶数的概率为59.8.如图25-2-1,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.图25-2-1(1)用列表法表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示); (2)求摸出的两张纸牌同为红色的概率. 解: (1)列表法:第1次第2次 A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD(2)P =212=16.9.如图25-2-2,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B ) A.16 B.13 C.12 D.22图25-2-2【解析】 共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K 1,K 3与K 3,K 1,∴能让两盏灯泡同时发光的概率为13.10.在x 2□2xy □y 2的空格“□”中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( C )A .1 B.34 C.12 D.14【解析】 在x 2□2xy □y 2的空格“□”中,分别填上“+”或“-”有四种情形:+-;++;-+;--,其中能构成完全平方式的有2种,故概率为24=12.11.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式:①AB =CD ;②AD =BC ;③AB∥CD ;④∠A =∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是__12__.【解析】 从4个条件中任取两个共有①②、①③、①④、②③、②④、③④6种可能性相等的结果,其中①②、①③、③④能得出四边形ABCD 是平行四边形,故能得出四边形ABCD 是平行四边形的概率为36=12.12.甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机各伸出一根手指;ⅱ)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时, (1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.解: 设A ,B ,C ,D ,乙甲 A B C D EA AA AB AC AD AE B BA BB BC BD BE C CA CB CC CD CED DA DB DC DD DE E EA EBEC ED EE由表格可知,共有25(1)由上表可知,甲伸出小拇指取胜有1种可能∴P (甲伸出小拇指取胜)=125.(2)由上表可知,乙取胜有5种可能,∴P (乙取胜)=525=15.13.一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率. 解: (1)设袋子里2号球的个数为x ,则: x 1+x +3=13,解得x =2.经检验,x =2为所列方程的解. ∴ 袋子里2号球的个数为2. (2)用列表法表示为: 结果 1 2 2 3 3 3 1 (2,1) (2,1) (3,1) (3,1) (3,1) 2 (1,2) (2,2) (3,2) (3,2) (3,2) 2 (1,2) (2,2) (3,2) (3,2) (3,2) 3 (1,3) (2,3) (2,3) (3,3) (3,3) 3 (1,3) (2,3) (2,3) (3,3) (3,3) 3 (1,3) (2,3) (2,3) (3,3) (3,3)1),(3,2),(3,2),(3,2),(3,2),(3,2),(3,2),共11种.把事件“点A (x ,y )在直线y =x 下方”记作事件A ,∴P (A )= 1130.第2课时 树状图求概率 [见A 本P56]1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( B )A .0 B.13 C.23D .12.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( A ) A.310 B.925 C.920 D.353.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是__13__.4.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是__23__.图25-2-35.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图25-2-3所示,学生B ,C ,D随机坐到其他三个座位上,则学生B 坐在2号座位的概率是__13__.6.如图25-2-4,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为__19__.7.在一个口袋中有4个完全相同的小球,把它们分别标上数字-1,0,1,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.求下列事件的概率: (1)两次都是正数的概率P (A );(2)两次的数字和等于0的概率P (B ).第一次第二次 -1 0 1 2-1 (-1,-1) (0,-1) (1,-1) (2,-1) 0 (-1,0) (0,0) (1,0) (2,0) 1 (-1,1) (0,1) (1,1) (2,1) 2 (-1,2) (0,2) (1,2) (2,2)(1)是正数的结果有4种,所以P (A )=416=14(2)由上表可知,两个数字和为0的结果有3种,所以P (B )=316.8.在一个不透明的箱子中装有3个小球,分别标有字母A ,B ,C ,这3个小球除所标字母外,其他都相同.从箱子中随机地摸出一个小球,然后放回;再随机地摸出一个小球.请你利用画树状图的方法,求两次摸出的小球所标字母不同的概率. 解:共有9种等可能的结果,其中两次摸出的小球所标字母不同的结果有6种,所以所求的概率为69=23.9.用图25-2-5中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( D ) A.14 B.34 C.13 D.12图25- 第9题答图【解析】 将第二个转盘中的蓝色部分等分成两部分,画树状图如答图.∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是12.10.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表的方法,求两次摸到不同颜色球的概率.【解析】 (1)由蓝球1个,任意摸出一个球是蓝球的概率为14,知共有4个球;又知袋中有红球2个,蓝球1个,故黄球只有1个.(2)根据列表的情况来求概率. 解:(1)袋中黄球的个数为1个; (2)列表如下:红1 红2 黄 蓝 红1 (红1,红2) (红1,黄) (红1,蓝) 红2 (红2,红1) (红2,黄) (红2,蓝) 黄 (黄,红1) (黄,红2) (黄,蓝) 蓝 (蓝,红1) (蓝,红2) (蓝,黄)所以两次摸到不同颜色球的概率为P =1012=56.11.阅读对话,解答问题.图25-2-6(1)分别用a ,b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x 2-ax +2b =0有实数根的概率. 解:(1)(a ,b )对应的表格为:ba 1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 4 (4,1) (4,2) (4,3)(2)∵方程x 2-ax +2b =0有实数根, ∴Δ=a 2-8b ≥0.∵使a 2-8b ≥0的(a ,b )有(3,1),(4,1),(4,2),∴P =312=14.12.甲、两乙人在玩转盘游戏时,把2个可以自由转动的转盘A ,B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图25-2-7所示),指针的位置固定,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜,若指针所指两个区域的数字之和为4的倍数,则乙胜,如果落在分割线上,则需要重新转动转盘. (1)试用列表或画树状图的方法,求甲获胜的概率; (2)这个游戏公平吗?图25-2-7解: (1)转盘A 转盘B 1 2 3 4 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) 5(1,5)(2,5)(3,5)(4,5)因为数字之和共有12种结果,其中“和是3的倍数”的结果有4种,所以P (甲获胜)=412=13. (2)因为“和是4的倍数”的结果有3种,所以P (乙获胜)=312=14, 因为13≠14,所以这个游戏不公平.13.现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别为2和3.从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜.请用列表法或画树状图的方法说明这个游戏是否公平.(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4,5,6三种情况,所以出现‘和为4’的概率是13”,她的这种看法是否正确?说明理由.解: (1)画树状图如下: 223 323由图可知,所有等可能的结果共有4种,其中,摸到的牌面数字相同的情况有2种,摸到的牌面数字不同的情况也有2种,所以P (小红获胜)=24=12,P (小明获胜)=24=12.所以这个游戏是公平的.(2)小丽的看法错误.两张牌的牌面数字“和为4”的概率为P (和为4)=14;两张牌的牌面数字“和为5”的概率为P (和为5)=24;两张牌的牌面数字“和为6”的概率为P (和为6)=14.所以小丽的看法不正确.。
人教版 初三数学 25.2 用列举法求概率 同步课时训练一、选择题1. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.122. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.233. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.595. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.236. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.137. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310B.625C.925D.3258. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.29二、填空题9. 一张圆桌旁有四个座位,A 先坐在如图所示的位置上,B ,C ,D 三人随机坐到其他三个座位上,则A 与B 不相邻坐的概率为________.10. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.11. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.12. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.13. 分别写有数字13,2,-1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.14. 小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.15. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17. 甲、乙、丙三名学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序. (1)求甲第一个出场的概率; (2)求甲比乙先出场的概率.18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 在一个不透明的袋子里装有4个分别标有1,2,3,4的小球,它们的形状、大小等完全相同.李强从袋子里随机取出1个小球,记下数字为x,王芳在剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.人教版 初三数学 25.2 用列举法求概率 同步课时训练-答案一、选择题1. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.2. 【答案】A3. 【答案】C4. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.5. 【答案】C[解析] 列表得:B 盘A 盘 3451 4 5 62 5 6 7 3678所以甲获胜的概率是59.6. 【答案】A[解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.7. 【答案】A[解析] 3本小说分别记作A ,B ,C ,2本散文分别记作D ,E.一共有20种等可能的结果,其中2本都是小说的结果有6种,因此随机抽取2本都是小说的概率是310.8. 【答案】D[解析] 如图,用A ,B ,C 分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.二、填空题9. 【答案】13 [解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.10. 【答案】38 [解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.11. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.12. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.13. 【答案】25 [解析] 五个数中2和π是无理数,故从中任意抽取一张,抽到无理数的概率是25.14. 【答案】16 [解析] 画树状图如下:因为从上到下的顺序总共有6种等可能的结果,顺序恰好为“上册、中册、下册”的结果有1种,所以从上到下的顺序恰好为“上册、中册、下册”的概率是16.15. 【答案】19 [解析] 列表如下:由表可知,共有9种等可能的结果,其中两人都抽到物理实验的结果只有1种,所以她们两人都抽到物理实验的概率是19.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:列举出所有出场顺序:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲.一共有6种等可能的结果. (1)其中甲第一个出场的结果有2种, 所以P (甲第一个出场)=13.(2)其中甲比乙先出场的结果有3种, 所以P (甲比乙先出场)=12.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为1 4.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为28=14.20. 【答案】解:(1)画树状图如下:由图可知,点M的坐标共有12种,即(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)以上12个点中,在函数y=x+1的图象上的点有3个,即(1,2),(2,3),(3,4),所以所求概率=312=1 4.。
25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。
人教版九年级上册数学25.2用列举法求概率同步练习一、单选题1.在一次联欢晚会上,某班进行以下游戏,准备两个不透明的袋子和7个小球(大小、形状完全一样),一个袋子里放置3个小球,球面上分别写着“好”“运”“来”,另一个袋子里放置4个小球,球面上分别写着“新”“年”“好”“运”.现从两个袋子里各随机抽取一个球,球面上的字可以组成“好运”字样的获得一等奖,则获得一等奖的概率为()A.112B.18C.16D.142.一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则两次摸到的球都是红球的概率是()A.12B.13C.49D.593.有5张看上去无差别的卡片,上面分别写着2,4,5,7,9,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是()A.25B.38C.13D.274.工厂从三名男工人和两名女工人中,选出两人参加技能大赛,则这两名工人恰好都是男工人的概率为()A.35B.15C.310D.255.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏,分别转动两个转盘(指针指向区域分界线时,忽略不计),若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率为()A.13B.512C.12D.7126.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片,不放回,再另外抽取一张,抽取的两张卡片上数字之积为0的概率是()A.14B.716C.12D.347.某人有红、白、蓝三条长裤和红、白、蓝三件衬衣,他从中任意拿一条长裤和一件衬衣,恰好颜色配套的概率是()A.18B.16C.13D.128.甲、乙两人各自掷一个普通的正方体骰子,如果两者之和为偶数,甲得1分;如果两者之和为奇数,乙得1分,此游戏()试卷第2页,共3页A .是公平的B .对乙有利C .对甲有利D .以上都不对二、填空题 9.当一次试验涉及两个因素并且可能出现的结果数目较多时,可以用_____法求概率.10.在平面直角坐标系中,设点(),P a b .从3,2--,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点(),P a b 落在第四象限内的概率是_______.11.从3,π,0,3.14,4,0.2020020002…(两个2之间依次多一个0)这六个数中随机抽取一个,抽到有理数的概率是__________________.12.有七张正面标有数字3-,2-,1-,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程()221ax a x a --+20-=有两个不相等的实数根的概率为______.13.某班一个学习小组包含男生3人,女生2人,某次上课小组讨论后,老师随机从该小组中抽取两人回答问题,则抽取到的两人恰好是1男1女的概率是________.14.如图所示的电路图中,当随机闭合1S ,2S ,3S , 4S 中的两个开关时,能够让灯泡发光的概率为 ______ .15.已知线段a 的长度为11,现从1~10这10条整数线段中任取两条,能和线段a 组成三角形的概率为 ___.三、解答题16.一个盒子中有1个红球、1个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求:(1)两次都摸到红球的概率;(2)两次摸到不同颜色的球的概率17.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?18.如图,有四张背面完全相同的纸牌,其正面分别写有汉字“我”“爱”“山”“西”,将这四张纸牌背面朝上放到水平桌面上,并洗匀.(1)若从中随机抽取一张纸牌,纸牌上的汉字是“爱”的概率是______;(2)若先从中任取一张纸牌,再从剩下的纸牌中任取一张,请用画树状图或列表的方法,求取出的两张纸牌上的汉字能组成“山西”的概率.19.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.。
25.2《列举法求概率》同步练习及答案 (2)◆随堂检测1.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A.16B.13C.12D.232.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1123.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.◆典例分析在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?分析:当所求问题涉及两个因素,产生的结果数目较多时,可以用画树状图或列表法分析求解.不过在画树状图或列表时一定要注意区别是有放回的问题还是无放回的问题,本题是无放回问题. 解:(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=. ◆课下作业 ●拓展提高1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45 B . C .25 D .152.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( ) A .12 B .13 C .14 D .163.四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。
人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A.B.C.D.2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.3.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.B.C.D.4.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为()A.B.C.D.5.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教室前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.B.C.1 D.6.小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,如图,依次制成编号为的五张卡片(除编号和内容外,其余完全相同).将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.则抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率是()A.B.C.D.7.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.B.C.D.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.10.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,是一个可以自由转动的转盘,盘面被平均,分成6等份,分别标有数字2,3,4,5,6,7.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).则转出的数字大于3的概率是.13.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”。
25.2 用列举法求概率同步练习一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球以后不放回布袋,再摸第二个球,这时获得的两个球的颜色中有“一红一黄”的概率是 ()A. 1B. 2C. 1D. 269332.同时投掷三枚质地平均的硬币,起码有两枚硬币正面向上的概率是()A. 3B.5C. 2D. 188323.如图是一次数学活动课制作的一个转盘,盘面被平分红四个扇形地区,并分别标有数字 - 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指地区的数字 (当指针恰巧指在分界限上时,不记,重转 ),则记录的两个数字都是正数的概率为 ()A. 1B. 1C. 1D. 186424.小明和他的爸爸妈妈共 3 人站成一排摄影,他的爸爸妈妈相邻的概率是 ()A. 1B. 1C. 1D. 263235.三名初三学生坐在仅有的三个座位上,起身后从头就坐,恰巧有两名同学没有坐回原座位的概率为()第1页/共7页A. )19B. )16C. )14D. )126.从九年级一班 3 名优异班干部和九二班 2 名优异班干部中随机抽取两名学生担当升旗手,则抽取的两名学生恰巧一个班的概率为()A. 1B. 2C. 3D. 455557.从长为 3,5,7,10 的四条线段中随意选用三条作为边,能构成三角形的概率是 ()A. 1B. 1C. 3D. 14248.小王家新锁的密码是 6 位数,他记得前两位数是 23,后两位数是 32,中间两位数忘了,那么他一次按对的概率是()A. 1B. 1C. 1D. 12050901009.某校高一年级今年计划招四个班的重生,并采纳随机摇号的方法分班,小明和小红既是该校的高一重生,又是好朋友,那么小明和小红分在同一个班的时机是 ()A. 41B. 31C. 21D. 4310. 若一个袋子中装有形状与大小均完整同样有 4 张卡片, 4 张卡片上分别标有数字 - 2,- 1,2,3,现从中随意抽出此中两张卡片分别记为 x,y,并以此确立点 ??( ??,??),那么点 P 落在直线??= - ??+ 1上的概率是 ()A.1B.1C.1D.12346二、填空题11. 有 5 张看上去无差其他卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取 2 张,抽出的卡片上的数字恰巧是两个连续整数的概率是______ .12.箱子里放有 2 个黑球和 2 个红球,它们除颜色外其他都同样,现从箱子里随机摸出两个球,恰巧为 1 个黑球和 1 个红球的概率是 ______ .13.假如随意选择一对有序整数 ( ??,??),此中 |??| ≤ 1,|??| ≤3,每一对这样的有序整数被选择的可能性是相等的,那么对于 x 的方程2有两个相等实数根的概率是 ______ .??+ ????+ ??= 014. 从- 1,- 2,1,2四个数中,任取一个数记为k,再从余下的三23个数中,任取一个数记为??.则一次函数 ??= ????+ ??的图象不经过第四象限的概率是 ______ .15.从- 1,0,2,3 这四个数中,任取两个数作为 a,b,分别代入一元二次方程2中,那么全部可能的一元二次???? + ????+ 2 = 0方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是 1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为这个两位数的十位第3页/共7页数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7的概率.17.最近几年来,手机微信红包快速流行起来 .昨年春节,小米的爷爷也试试用微信发红包,他分别将 10 元、30 元、60 元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只好抢一个红包,且抢就任何一个红包的时机均等 (爷爷只发不抢,红包里钱的多少与抢红包的先后次序没关 ).(1)求小米抢到 60 元红包的概率;(2)假如小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这类状况下,求小米和妈妈两个人抢到红包的钱数之和许多于 70 元的概率.18.若 n 是一个两位正整数,且 n 的个位数字大于十位数字,则称 n为“两位递加数”(如 13,35,56 等).在某次数学兴趣活动中,每位参加者需从由数字 1,2,3,4,5,6 组成的全部的“两位递加数”中随机抽取 1 个数,且只好抽取一次.(1)写出全部个位数字是 5 的“两位递加数”;(2)请用列表法或树状图,求抽取的“两位递加数”的个位数字与十位数字之积能被 10 整除的概率.第5页/共7页【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11.2512.2313.1714.1615.1416.解: ( 1) 画树状图:共有 16 种等可能的结果数,它们是:11, 41,71,81,14,44,74,84,17,47,77,87, 18,48,78, 88;( 2)算术平方根大于 4 且小于 7 的结果数为 6,因此算术平方根大于 4 且小于 7 的概率 = 166 = 38.17.解: ( 1) 小米抢到 60 元红包的概率 = 1;3( 2)画树状图为:共有 24 种等可能的结果数,此中小米和妈妈两个人抢到红包的钱数之和许多于70 元的结果数为 8,因此小米和妈妈两个人抢到红包的钱数之和许多于70 元的概率 = 8= 1.24318. 解:(1)依据题意全部个位数字是 5 的“两位递加数”是 15、25、35、45 这 4 个;( 2)画树状图为:共有 15 种等可能的结果数,此中个位数字与十位数字之积能被10整除的结果数为 3,因此个位数字与十位数字之积能被10 整除的概率 = 3= 1.155第7页/共7页。
2014人教版九年级数学上册第25章25.2《列举法求概率》同步练习及答案 (2)◆随堂检测1.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?,求y与x之间的函数关系式. (2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是143.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.◆典例分析为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择A 、B 中哪个转盘呢?并请说明理由.分析:首先要将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”这个问题涉及两个带指针的转盘,即涉及两个因素,产生的结果数目较多,列举时很容易造成重复或遗漏.为了避免这种重复或遗漏, 可以用画树状图和列表法求解,不过用列表法更简单.列表的时候,注意左上角的内容要16 8A45 7B联欢晚会游戏转盘规范,中间结果一般要用有序数对的形式表示;每一个转盘转动,都有3种等可能的结果,而且第二个转盘转动的结果不受第一个结果的限制,因此一共有33 =9种等可能的结果. 解:列表如下: 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种.∴P(A 数较大)=95,P(B 数较大)=94.∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.◆课下作业 ●拓展提高1.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图所示),从中任意一张是数字3的概率是( )A B 4 5 7 1 (1,4) (1,5) (1,7) 6 (6,4) (6,5) (6,7) 8(8,4)(8,5)(8,7)A.61B.31C.21D.322.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 3.一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一球后放回去摇匀,再摸出一个球,则小亮两次都能摸到白球的概率是________.4.如图,有三张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.5.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5.●体验中考1.(2009年,台州市)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( ) A .23B .15C .D .352.(2009年,丽水市)如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在-3 1 正 面 背 面2分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是_______.3.(2009年,常德市)“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?参考答案:◆随堂检测1.45.876543212.解:(1)取出一个黑球的概率44347P ==+. (2)取出一个白球的概率37x P x y +=++,∴3174x x y +=++, ∴1247x x y +=++,∴y 与x 的函数关系式为35y x =+. 3.解:列表如下:∴P (两次摸出的小球的标号之和为“8”或“6”)=4.◆课下作业●拓展提高1.B.2.D..3.194.解:列表(略).由表可知,共有9种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了4次.因此,两张卡片上的数都是正数的概率4p .95.解:列表如下:第21 2 3 4 5 6个第1个1 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6).由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.●体验中考 1.C. 2.157. 3.解:设这三种图案分别用A 、B 、C 表示,则列表得∴()93P ==获得礼品.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
25.2 用列举法求概率
同步练习
一、选一选(请将唯一正确答案的代号填入题后的括号内) 1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ).
A .41
B .21
C .43
D .1.
2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法法有( )种.
A .4
B .7
C .12
D .81.
3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ).
A .
13 B .112 C .1
4
D .1. 4.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是(
) .
A. 2
5
B .3
10
C .3
20
D .15
5.掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是 ( )
A .和为11
B .和为8
C .和为3
D .和为2 6.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的
2
1
的概率是( ). A. 6
1
B. 3
1
C. 2
1
D. 3
2
7. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得
1234
534
8
9
若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ).
A. 4
1
B. 6
1
C.
51
D.
20
3
8.用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率为( ).
A .
35 B .23 C .120 D .1
125
二、填一填
9.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.则A 与B 不相邻而坐的概率为_____________.
10. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.
11.5个完全相同的白色球全部放入两个完全相同的抽屉,可以有一个抽屉空着,那么两个抽屉中都至少有2个球的概率是_____.
12.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为_______________________;数字之积为奇数的概率为______.
三、做一做
13.小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.
(1)若小明恰好抽到了黑桃4.①请在下边
框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.
A 圆桌
甲
42
乙
53
1
(4,2)
2
4
结果小华抽的扑克小明抽
的扑克
(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负.你认为这个游戏是否公平?说明你的理由.
14.《列子》中《歧路亡羊》写道:
杨子之邻人亡羊,既率其党,又请杨子之竖追之。
杨 子曰:“嘻!亡一羊,何追者之众?”邻人日:“多歧
路。
”既 反,问:“获羊乎?”日:“亡之矣。
”曰:“奚亡之?”曰:“歧路 之中又有歧焉,吾不知所之,所以反也.”
如图,假定所有的分叉口都各有两条新的歧路,并且丢失的羊走每条歧路的可能性都相等.(1)到第n 次分歧时,共有多少条歧路?以当羊走过n 个三叉路口后,找到羊的概率是多少?(2)当n=5时,派出6个人去找羊,找到羊的概率是多少?
15. 两人要去某风景区游玩,每天某—时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆乍的状况比第一辆好,他就上第二辆车;如果第二辆不比第—辆好,他就上第三辆车.若把这三辆车的舒适程度分为上、中、下三等.请问:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么? 四、试一试
16. 如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB 为边且面积为2的一个网格三角形;
(2)任取该网格中能与A 、B 构成三角形的一点M ,求以A 、B 、M 为顶点的三角形的面积为2的概率;
(3)任取该网格中能与A 、B 构成三角形的一点M ,求以A 、B 、M 为顶点的三角形为直角
三角形的概率.
B
A
参考答案
一、 1.A 2.C
3.C 4.B
5.B
6.A 7.B
8.A
二、
9.31
10. 31 11.3
1
12.1,2,3,4,5,6,8,9,10,12,15,16,18,20,24 ;
1
4
. 三、
13.(1)树形图略;
23
;(2)这个游戏对先抽牌的小明不利,因为12种可能结果中,先抽牌的人能获胜的只有5种,即先抽牌者获胜的概率为5
12
.
14. (1)到第n 次分歧时,共有2n
条歧路;当羊走过n 个三叉路口后,找到羊的概率为
12n
; (2)当n=5,6个人去找羊时,找到羊的概率为51360.1875216
P =
⨯==. 15.这是一道方案决策型的题.解这类题应根据题中条件,把所有可能的情况—用表格形式列出来.再来逐一分析得出最佳方案.
(1)三辆车开来的先后顺序有6种可能:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中).
(2)由于不知道任何信息,所以只能假定6种顺序出现的可能性相同.我们来研究在各种可能性的顺序之下,甲、乙二人分别会上哪一辆汽车:
于是不难得出,甲乘上、中、下三辆车的概率都是13
;而乙乘上等车的概率是
12;乘中等车的概率是1
3
,乘下等车的概率是1
6
.乙采取的方案乘坐上等车的可能性大.
16. (1)图形略,共12个三角形;(2)以A 、B 、M 为顶点的三角形的面积为2的概率为
12123
6375614==
-;(3)以A 、B 、M 为顶点的三角形为直角三角形的概率为12123
6375614
==-.
顺序 甲 乙 上、中、下 上 下 上、下、中 上 中 中、上、下
中 上 中、下、上 中 上 下、上、中 下 上 下、中、上
下
中。