北邮随机信号分析与处理第5章习题解答
- 格式:pdf
- 大小:228.80 KB
- 文档页数:10
第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。
解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。
5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。
试求随机序列y k 的功率谱。
解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。
第五章习题与上机题5.1 已知序列12()(),0 1 , ()()()nx n a u n a x n u n u n N =<<=--,分别求它们的自相关函数,并证明二者都是偶对称的实序列。
解:111()()()()()nn mx n n r m x n x n m a u n au n m ∞∞-=-∞=-∞=-=-∑∑当0m ≥时,122()1mmnx n ma r m aaa∞-===-∑ 当0m <时,122()1m mnx n a r m aaa -∞-===-∑ 所以,12()1mx ar m a =-2 ()()()()N x n u n u n N R n =--=22210121()()()()()1,0 =1,00, =()(1)x NN n n N mn N n m N r m x n x n m Rn R n m N m N m N m m Nm N m R m N ∞∞=-∞=-∞--=-=-=-=-⎧=--<<⎪⎪⎪⎪=-≤<⎨⎪⎪⎪⎪⎩-+-∑∑∑∑其他从1()x r m 和2()x r m 的表达式可以看出二者都是偶对称的实序列。
5.2 设()e()nTx n u n -=,T 为采样间隔。
求()x n 的自相关函数()x r m 。
解:解:()()()()e()e ()nTn m T x n n r m x n x n m u n u n m ∞∞---=-∞=-∞=-=-∑∑用5.1题计算1()x r m 的相同方法可得2e()1e m Tx Tr m --=-5.3 已知12()sin(2)sin(2)s s x n A f nT B f nT ππ=+,其中12,,,A B f f 均为常数。
求()x n 的自相关函数()x r m 。
解:解:()x n 可表为)()()(n v n u n x +=的形式,其中)2sin()(11s nT f A n u π=,=)(n v 22sin(2)s A f nT π,)(),(n v n u 的周期分别为 s T f N 111=,sT f N 221=,()x n 的周期N 则是21,N N 的最小公倍数。
5.1 求题图5.1中三个电路的传输函数(不考虑输出负载)。
RRC1C 2C 1C 2C 1R 2R题图5.1解根据电路分析、信号与系统的知识, 第一个图中系统的传输函数 1/1()1/1j C H j R j C j RCωωωω==++ 第二个图中系统地传输函数 ()21112211/1()/11/1/j C j RC H j R j C j R C C j C R j C ωωωωωωω+==++++ 第三个图中系统地传输函数()2222212111221212121122/1/()//1/1/R j C R j C R j R R C H j R j C R j C R R j R R C C R j C R j C ωωωωωωωωω++==++++++5.2若平稳随机信号)(t X 的自相关函数||2)(ττ-+=BeA R X ,其中,A 和B 都是正常数。
又若某系统冲击响应为()()wth t u t te -=。
当)(t X 输入时,求该系统输出的均值。
解: 因为[]()22X EX R A =∞=所以[]E X A A =±=±。
()()()()()20wt A E Y t E h X t d E X t h d A te dt wξξξξξ∞∞∞--∞-∞±⎡⎤=-==±=⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰⎰⎰ 5.35.4 若输入信号00()cos()X t X t ω=++Φ作用于正文图5.2所示RC 电路,其中0X 为[0,1]上均匀分布的随机变量,Φ为[0,2π]上均匀分布的随机变量,并且0X 与Φ彼此独立。
求输出信号Y(t)的功率谱与相关函数。
解:首先我们求系统的频率响应()H j ω。
根据电路分析、信号与系统的知识,/1/11()()()1/1t RCj C H j h t e u t R j C j RCRCωωωω-==↔=++ 然后,计算)(t X 的均值与自相关函数,[]()1/2X m E X t ==[]{}(){}{}0000(,)cos cos X R t t EXt X t τωωτ+=++Φ+++Φ=⎡⎤⎣⎦()01/31/2cos ωτ+可见)(t X 是广义平稳的。
第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。
证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。
可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。
如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。
因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。
5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。
m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。
sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。
sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。
FIR 数字滤波器设计本章知识点:对于一个离散时间系统∑∑=-=--=M 1n nn 1-N 0n nnz a 1z bz H )(,若分母多项式中系数0a a a M 21====Λ,则此系统就变成一个FIR 系统∑-=-=1N 0n nn z b z H )(,其中系数1-N 10b ,.b ,b Λ即为该系统的单位取样响应h ( 0 ) , h ( 1 ) ,… h ( N-1 ),且当n > N-1时,h ( n ) = 0。
FIR 系统函数H(z) 在Z 平面上有N-1个零点,在原点z=0处有N-1个重极点。
这类系统不容易取得较好的通带和阻带特性,要想得到与IIR 系统类似的衰减特性,则要求较高的H(z)阶次。
相比于IIR 系统来说,FIR 系统主要有三大突出优点:1)系统永远稳定;2)易于实现线性相位系统;3)易于实现多通带(或多组带)系统。
线性相位FIR 滤波器实现的充要条件是:对于任意给定的数值N (奇数或偶数),冲激响应h[n] 相对其中心轴21-N 必须成偶对称或奇对称,此时滤波器的相位特性是线性的,且群延时均为常数 21-=N τ。
由于h(n) 有奇对称和偶对称两种情况,h(n)的点数N 有奇数、偶数之分。
因此,h (n )可以有4种不同的类型,分别对应于4种线性相位FIR 数字滤波器:h[n] 偶对称N 为奇数、h[n] 偶对称N 为偶数、h[n] 奇对称N 为奇数、h[n] 奇对称N 为偶数。
四种线性相位FIR 滤波器的特性归纳对比于表5.1中。
一.FIR DF 设计方法FIR DF 的设计实现不能像IIR DF 设计那样借助于模拟滤波器的设计方法来实现,其设计方法主要是建立在对理想滤波器频率特性进行不同程度逼近的基础上,主要的逼近方法有三种:窗函数法;频率抽样法;最佳一致逼近法。
1. 窗函数法窗函数法是设计FIR 滤波器的最直接方法,它通过采用不同时宽的窗函数,对理想滤波器的无限长冲激响应h d (n)进行截短,从而得到系统的有限长冲激响应 h (n),这一过程可用式5-1来描述:,021-N ||,(n)h )()()(d ⎪⎩⎪⎨⎧≤=其它= n n w n h n h R d (5.1)其中W R (n)是时宽为N 的窗函数。
FIR 数字滤波器设计本章知识点:对于一个离散时间系统∑∑=-=--=M 1n nn 1-N 0n nnz a 1z bz H )(,若分母多项式中系数0a a a M 21==== ,则此系统就变成一个FIR 系统∑-=-=1N 0n n nz bz H )(,其中系数1-N 10b ,.b ,b 即为该系统的单位取样响应h ( 0 ) , h ( 1 ) ,… h ( N-1 ),且当n > N-1时,h ( n ) = 0。
FIR 系统函数H(z) 在Z 平面上有N-1个零点,在原点z=0处有N-1个重极点。
这类系统不容易取得较好的通带和阻带特性,要想得到与IIR 系统类似的衰减特性,则要求较高的H(z)阶次。
相比于IIR 系统来说,FIR 系统主要有三大突出优点:1)系统永远稳定;2)易于实现线性相位系统;3)易于实现多通带(或多组带)系统。
线性相位FIR 滤波器实现的充要条件是:对于任意给定的数值N (奇数或偶数),冲激响应h[n] 相对其中心轴21-N 必须成偶对称或奇对称,此时滤波器的相位特性是线性的,且群延时均为常数 21-=N τ。
由于h(n) 有奇对称和偶对称两种情况,h(n)的点数N 有奇数、偶数之分。
因此,h (n )可以有4种不同的类型,分别对应于4种线性相位FIR 数字滤波器:h[n] 偶对称N 为奇数、h[n] 偶对称N 为偶数、h[n] 奇对称N 为奇数、h[n] 奇对称N 为偶数。
四种线性相位FIR 滤波器的特性归纳对比于表5.1中。
一.FIR DF 设计方法FIR DF 的设计实现不能像IIR DF 设计那样借助于模拟滤波器的设计方法来实现,其设计方法主要是建立在对理想滤波器频率特性进行不同程度逼近的基础上,主要的逼近方法有三种:窗函数法;频率抽样法;最佳一致逼近法。
1. 窗函数法窗函数法是设计FIR 滤波器的最直接方法,它通过采用不同时宽的窗函数,对理想滤波器的无限长冲激响应h d (n)进行截短,从而得到系统的有限长冲激响应 h (n),这一过程可用式5-1来描述:,021-N ||,(n)h )()()(d ⎪⎩⎪⎨⎧≤=其它= nn w n h n h R d (5.1)其中W R (n)是时宽为N 的窗函数。