高中物理中“轻绳”“轻杆”和“轻弹簧”问题的分析
- 格式:docx
- 大小:22.38 KB
- 文档页数:6
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
轻绳、轻杆和轻弹簧模型的应用一、三个模型的相同点1、“轻”—不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。
二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。
轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。
轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意:当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。
轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
轻弹簧—弹力对物体作功,系统机械能守恒;弹力作正功,弹性势能减少,物体动能增加;弹力作负功,弹性势能增加,物体动能减少。
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
圆周运动中的轻绳、轻杆和轻弹簧圆周运动中常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,“轻绳”“轻杆”及“轻弹簧”是由各种实际情况中的绳、杆和弹簧抽象出来的理想物理模型.作为这一类模型,一般情况下,“轻”往往是(相对其他物体来说)指其质量可以忽略,所受重力可以忽略,而绳和杆则往往是其形体在同一直线上,且其长度不发生变化,而弹簧可以伸长也可以被压缩.由此导致这类模型在圆周运动中具有其特有的关系。
一、轻绳对物体只能产生沿绳收缩方向的拉力【例1】如图1所示,一摆长为L的单摆,摆球的质量为m,要使摆球能在竖直平面内做完整的圆周运动,那么摆球在最底点的速度v0至少要多大?解析小球在最高点的受力情况如图1所示,由牛顿第二定律得mg+T=mv2/L,由于m、L一定,所以小球在最高点的速度v越小,此时绳中拉力T就越小,当T=0时,小球具有不脱离轨的最小速度,因此当v0最小时,在最高点有mg=mv2/L,从最底点到最高点,小球机械能守恒,有(1/2)mv02=2mgL+(1/2)mv2,由以上各式联立解得v0的最小值为v0=.【总结】由于轻绳只能有拉力作用,因此只有当v0≥才能使小球做完整的圆周运动.它的这种规律与竖直平面内放置一半径为L的轨道,小球在内轨做完整的圆周运动情况类似.二、轻杆对物体既可以有拉力也可以有支撑力【例2】在例1中,将轻绳换成轻杆,要使摆球能在竖直平面内做完整的圆周运动,在最底点小球的速度v0至少要多大?解析如图2所示,小球在最高点既可以受到轻杆的拉力,又可以受到轻杆的支撑力,所以小球在最高点的合外力最小可以为零.因此,小球在最高点的速度最小且不脱离轨道,此速度可以为零.而小球在最高点的速度值v=则是小球在最高点受到轻杆对它弹力方向变化的临界值.即v<时,轻杆对它有向上的支撑力;v=时,轻杆对它无作用力;v>时,轻杆对它有向下的拉力.从最底点到最高点,由机械能守恒定律得(1/2)mv02=2mgL,解得v0=.【总结】由于轻杆对物体的作用既可以是拉力,又可以是支撑力,则物体在竖直平面内做完整的圆周运动,在最底点的速度只要大于即可.它的这种规律与竖直平面内放置圆管,小球在圆管内做完整的圆周运动相类似.如图3所示.三、轻弹簧对物体既可以有拉力,也可以有支持力,但长度随力的变化而变化例3有原长为L0的轻弹簧,劲度系数为k,一端系一质量为m的物体,另一端固定图1图2图3图4在转盘上的O点,如图4所示.物块随同转盘一起以角速度ω转动,物块与转盘间的最大静摩擦力为fm,求物块在转盘上的位置范围.【解析】由题意知,物块与转盘间有最大静摩擦力fm,当物块转动半径最小时,设为r1,此时弹簧被压缩的量为L0-r1,对物块而言,受有指向圆心的最大静摩擦力fm及弹簧的弹力F,且F=k(L0-r1),则fm-k(L0-r1)=mr1ω2,解得r1=(fm-kL0)/(mω2-k).当物块转动半径最大时,设为r2,此时弹簧的伸长量为(r2-L0),对物块而言,受有指向圆心的弹簧的弹力F及最大静摩擦力fm,且F=k(r2-L0),则k(r2-L0)-fm=mr2ω2,解得r2=(fm+kL0)/(k-mω2).所以物块所处的位置为(fm-kL0)/(mω2-k)≤r≤(fm+kL0)/(k-mω2).由以上分析可看出,在具体问题中,要注意分清轻绳、轻杆和轻弹簧的区别,现列表如下进行比较:类别特性作用力效果作用力方向形体在同一直线上的变化具体体现轻绳只能是拉力只能沿绳方向不变化轻杆既可以是拉力又可以是支撑力沿杆方向不变化轻弹簧既可以是拉力又可以是“推”力沿弹簧方向变化。
轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。
.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。
因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。
如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。
再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。
本题 C 选项符合题意。
(2)软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。
注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。
例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。
解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。
轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。
则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。
图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。
专题2.6 轻绳、轻杆、轻弹簧“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”问题轻杆、轻绳、轻弹簧模型1.三种模型对比型图型特只能发生微小形变张力大小相等方向特点可以是任意方向2.弹簧与橡皮筋的弹力特点(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx。
(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等。
(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用。
(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失。
【典例1】如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球。
下列关于斜杆对小球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上 【思路点拨】解答本题时可按以下思路进行:小球的运动状态―→小球所受的合力―――――――→牛顿第二定律或者平衡条件确定弹力的大小和方向【名师点睛】 轻杆弹力的确定方法杆的弹力与绳的弹力不同,绳的弹力始终沿绳指向绳收缩的方向,但杆的弹力方向不一定沿杆的方向,其大小和方向的判断要根据物体的运动状态来确定,可以理解为“按需提供”,即为了维持物体的状态,由受力平衡或牛顿运动定律求解得到所需弹力的大小和方向,杆就会根据需要提供相应大小和方向的弹力。
一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
浅析轻绳、轻杆和轻弹簧模型的应用轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。
三个模型的相同点1、“轻”—不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。
三个模型的不同点形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。
轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。
轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意:当弹簧的自由端无重物时,形变消失不需要时间)连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。
方法15 高中物理模型盘点(五)轻杆、轻绳和轻弹簧模型物理模型盘点——轻杆、轻绳、轻弹簧模型1.三种模型的相同点(1)“轻”——不计质量,不受重力。
(2)在任何情况下,沿绳、杆和弹簧伸缩方向的弹力处处相等。
2.三种模型的不同点轻杆轻绳轻弹簧形变 特点 只能发生微小形变,不能弯曲只能发生微小形变,各处弹力大小相等,能弯曲发生明显形变,可伸长,也可压缩,不能弯曲方向 特点 不一定沿杆,可以是任意方向只能沿绳,指向绳收缩的方向 一定沿弹簧轴线,与形变方向相反 作用效 果特点 可提供拉力、推力只能提供拉力可以提供拉力、推力能否 突变能发生突变 能发生突变 一般不能发生突变如图所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球的重力为12 N ,轻绳的拉力为10 N ,水平轻弹簧的拉力为9 N ,则轻杆对小球的作用力的大小及其方向与竖直方向夹角θ为( )A .12 N 53°B .6 N 90°C .5 N 37°D .1 N 90°解析: 本题考查轻绳、轻杆、轻弹簧中力的方向及大小的特点,解题时要结合题意及小球处于平衡状态的受力特点。
以小球为研究对象,受力分析如图所示,小球受四个力的作用:重力、轻绳的拉力、轻弹簧的拉力、轻杆的作用力,其中轻杆的作用力的方向和大小不能确定,重力、弹簧的弹力二者的合力的大小为F =G 2+F 21=15 N 。
设F 与竖直方向夹角为α,sin α=F 1F =35,则α=37°。
所以杆对小球的作用力方向与F 2方向相同,大小为F 1-F 2=5 N 。
故选项C 正确。
答案: C如图所示,一重为10 N的球固定在支杆AB的上端,用一段绳子水平拉球,使杆发生弯曲。
已知绳的拉力为7.5 N,则AB杆对球的作用力()A.大小为7.5 NB.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方解析:对小球进行受力分析可得,AB杆对球的作用力和绳子的拉力与小球的重力的合力等值反向,由平衡条件知:F=102+7.52 N=156.25 N,故A、B均错。
轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一. 三种模型的特点1. 轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2. 轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二. 三种模型的应用例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
龙源期刊网
谈轻绳、轻杆和轻弹簧三种理想模型
作者:毕海涛
来源:《数理化学习·高三版》2013年第09期
在高中物理中,轻绳、轻杆和轻弹簧三种理想化模型是极为常见的,但却并不为学生所熟知.在许多力学问题中,由于对模型特性理解得不准确,出现了学生一听就“通”,教师一讲就“痛”的现象.本文将通过深入分析,对三个模型进行全面的展示.
何为“轻”?顾名思义,质量很小,物理学中视这样的物体m=0.
为何采用“轻”模型?为了突出其产生的弹力特点而忽略其质量引起的其他问题,这体现了《高中物理课程标准》中“了解物质结构、相互作用和运动的一些基本概念和规律”的目标要求.
“轻”模型的共同特点是什么?因为m=0,根据牛顿第二定律,
F合=0,所以“轻”模型在共点力作用下始终处于平衡状态,这有助于问题的进一步探讨.。
高中物理中“轻绳”、“轻杆”和“轻弹簧”
的问题分析
中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。
一、三个模型的正确理解
1. 轻绳模型
轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2. 轻杆模型
轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3. 轻弹簧模型
轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用
下面结合例题分析它们的区别及应用:
1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?
解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。
因为细绳只能被拉伸,则绳的弹力只能是沿绳方向的拉力,设绳与竖直方向的夹角为α。
则有
可见轻绳对小球的作用力大小随着加速度a的改变而改变,但它的方向一定是在绳子的方向上。
【例2】如图3所示,小车上固定一弯折硬杆ABC,C端固定一质量为m的小球:
(1)当小车向左匀速直线运动时,BC杆对小球作用力的大小和方向。
(2)当小车以加速度a水平向左做匀加速直线运动时,BC杆对小球作用力的大小和方向。
解析:以小球为研究对象进行受力分析,小球受二个力作用:重力mg和BC杆对小球弹力F(如图4):
(1)小球受力如图4所示,由平衡条件可知杆对小球的弹力大小为:F = mg,方
向与重力的方向相反,竖直向上。
注意:BC杆对小球的作用力方向并不沿BC杆的方向。
(2)设小车向左运动的加速度的大小为a,杆对小球作用力与竖直方向的夹角为β。
如图5所示,
由牛顿第二定律可知杆对小球作用力的大小和方向分别为
可见杆对小球的作用力大小随小车加速度a的改变而改变,它的方向不一定沿着杆的方向,只有当∠α=∠β,即时,杆对小球作用力的方向才沿BC杆方向。
2. 轻绳的弹力只能是拉力,而轻杆、轻弹簧的弹力可以是拉力也可以是压力。
这种情况常出现在竖直平面内的圆周运动问题中。
【例3】(1)如图6所示,一轻绳一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法正确的是()
A. 小球过最高点时,最小速度为
B. 小球过最高点时,轻绳所受的弹力可以等于零
C. 小球过最高点时,轻绳对球的作用力可以与球所受重力方向相反。
D. 小球过最高点时,轻绳对球的作用力一定与球所受重力方向相同。
(2)若将图6中的轻绳改为轻杆,其他条件不变,以下说法正确的是()
A. 小球过最高点时,最小速度为
B. 小球过最高点时,轻杆所受的弹力可以等于零
C. 小球过最高点时,轻杆对球的作用力可以与球所受重力方向相反。
D. 小球过最高点时,轻杆对球的作用力一定与球所受重力方向相同。
[解析](1)因为小球用轻绳连接,轻绳只能产生沿绳子收缩方向的拉力T,故选项(D)正确,选项(C)错误。
在最高点处由得知当T=0时,向心力最小,小球的速度也最小,故选项(A)、(B)都正确。
(2)因为小球用轻杆相连,轻杆既可产生拉力,又可产生支持力,也可不产生作用。
但重力和杆对小球作用力的合力一定指向圆心,在最高点处(以竖直向下为正)由得知:当mg+F杆=0时,此时小球速度最小,为V=0,故选项(A)错;
当时,F杆=0,故选项(B)正确;
当时,F杆>0,即F杆与重力同向,当时,F杆<0、即F杆与重力反向,故选项(C)对,(D)错。
3. 轻绳及杆的弹力可突变,而轻弹簧的弹力只能渐变。
【例4】如图7所示,小球在细线OB和水平细线AB的作用下处于静止状态,则在剪断水平细线的瞬间,小球的加速度多大?方向如何?
[解析]在剪断细线AB之前对小球进行受力分析,如图8所示,小球在三力作用下平衡,由平衡条件可得:
当剪断水平细线AB时,FT 突然消失(FT=0),此时小球由于细线OB的限制,在沿OB方向上,小球不可能运动,故小球只能沿着与OB垂直的方向运动,也就是说,此时小球所受到的重力的作用效果是使小球拉绳和沿垂直绳的方向做加速运动,其重力分解如图9所示。
由图9可知在沿绳的方向有:
在沿垂直绳的方向有
即,方向垂直于OB向下。
(由图9分析可知,在绳OB方向上的拉力突变为,可见当剪断水平细线AB时,细线OB的拉力发生了突变。
)
若将图7中的细绳OB改为长度相同、质量不计的轻弹簧,如图10所示,其它条件不变,当剪断细绳AB瞬间小球的加速度又是多少?方向如何?
解析:同理在细线剪断前,由三力平衡条件(如图11所示)可得:
水平细线的拉力为
弹簧的拉力为
当剪断细线的瞬间如图12示,FT 突然消失,而弹簧来不及发生形变,故弹簧弹力F大小和方向没有发生变化,其大小仍为,但小球在FT 反方向上获得加速度a,所以小球加速度大小为,方向水平向右。