《探索轴对称的性质》教学课件
- 格式:ppt
- 大小:1.02 MB
- 文档页数:28
7.3 探索轴对称的性质1. 什么是轴对称?轴对称是指图形存在一个轴线,使得图形关于这条轴线对称。
轴对称具有以下特点: - 被轴对称的图形的左半部分与右半部分完全重合; - 轴对称的图形具有相同的形状、大小和图案; - 轴对称的图形可以通过在轴线上旋转180度得到;2. 轴对称的图形种类轴对称的图形可以是二维图形,也可以是三维图形。
2.1 二维图形常见的二维图形中,有许多具有轴对称性质的图形,例如: - 正方形 - 矩形 - 圆形 - 镜像字母(例如字母X、字母H) - 雪花形状(例如六边形雪花)2.2 三维图形在三维空间中,轴对称的图形种类更加丰富。
除了二维图形的轴对称性质外,三维图形还有额外的轴对称性质,例如: - 立方体 - 圆柱体 - 球体 - 圆锥体等3. 轴对称在日常生活中的应用轴对称的性质在日常生活中有许多实际应用。
3.1 拼图游戏拼图游戏中,常常使用轴对称的形状作为拼图的元素,通过将轴对称的形状拼接在一起,来完成整个拼图。
例如,一些儿童拼图书中会出现许多轴对称的动物形状,通过拼接这些形状,可以锻炼孩子们的观察能力和操作能力。
3.2 电子产品设计在电子产品的设计中,轴对称的性质也经常被应用。
例如,许多手机的外观设计和按键布局都是以轴对称的方式设计的,这样可以使得手机外观更加美观、布局更加整齐。
3.3 建筑设计在建筑设计中,轴对称的性质也经常被应用。
许多建筑物的立面设计和对称结构都是以轴对称的方式进行设计的,这样可以使得建筑物更加美观、稳定。
4. 如何判断一个图形是否轴对称?判断一个图形是否轴对称可以通过以下步骤进行:1.找到图形的中心点,并确定可能的轴线;2.对图形进行折叠,使得两侧完全重合;3.判断折叠后两侧是否完全重合,如果重合则图形是轴对称的。
5. 轴对称的性质与数学关系轴对称的性质在数学中也有一些相关的概念和性质。
5.1 点关于轴线的对称性一个点关于轴线的对称点是指,将点沿着轴线折叠后得到的点。
北师大版数学七年级下册5.2《探索轴对称的性质》教案一. 教材分析《探索轴对称的性质》这一节的内容,主要让学生了解轴对称的性质,并学会运用这些性质解决实际问题。
教材通过丰富的图片和实例,引导学生发现轴对称图形的性质,从而培养学生的观察能力、思考能力和实践能力。
二. 学情分析学生在七年级上册已经学习了轴对称的概念,对轴对称有了初步的认识。
但他们对轴对称的性质的理解还不够深入,本节课需要通过大量的实例和活动,让学生在实践中发现和总结轴对称的性质。
三. 教学目标1.知识与技能:让学生掌握轴对称的性质,并能运用性质解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生发现规律、总结规律的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:轴对称的性质。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考。
2.情境教学:利用图片、实例,创设情境,让学生在实践中学习。
3.小组合作:引导学生分组讨论,共同解决问题。
六. 教学准备1.准备相关的图片和实例,用于引导学生发现轴对称的性质。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生回顾轴对称的概念,激发学生对轴对称性质的兴趣。
2.呈现(10分钟)展示一系列具有对称性的图形,让学生观察并思考:这些图形有什么共同的特点?引导学生发现轴对称图形的性质。
3.操练(10分钟)让学生分组讨论,每组选择一个图形,尝试找出它的对称轴,并总结对称轴的特点。
然后,让学生尝试运用轴对称的性质解决实际问题。
4.巩固(10分钟)针对学生找出的对称轴,设计一些练习题,让学生解答,以巩固所学知识。
5.拓展(5分钟)引导学生思考:轴对称性质在实际生活中的应用。
可以让学生举例说明,也可以让学生自己设计一些应用场景。
6.小结(5分钟)对本节课的内容进行总结,强调轴对称的性质及其应用。
知新篇一.轴对称的性质及其应用(1)轴对称的性质:①对应点所连的线段被对称轴 。
②对应 相等,对应 相等。
(2)如图是一个轴对称图形,直线AO 是对称轴, 则相等的线段有: = , = 。
线段CD 被直线AO 。
量得30B∠,则∠E= 。
(3)设A 、B 两点关于直线MN 对称,则_____垂直平分______。
(4)等腰三角形是轴对称图形,它的底边被对称轴_________。
提醒:(1)对称轴上的点即是对应点所连线段的垂直平分线. (2)找准对应线段和对应角。
二.轴对称在实际中的应用 1.按边分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 2.按角分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 三.三角形的三边关系1.AB+AC BC, AB-AC BC.2.结论:三角形两边的和______第三边.三角形两边的差____第三边.【典例】【思路分析】判断三条线段能否组成三角形可根据三角形三边关系:“两边之和大于第三边,两边之差小于第三边”进行判断.最简单方法是:看较短两边的和是否大于最长边. 【解析】【点睛】在判断已知三条线段是否能够组成三角形,必须满足下列两个条件之一:(1)如果选最长边作第三边,则需判断其余两边之和大于第三边,(2)如果选最短边作第三边,则需判断其余两边之差小于第三边.三角形三边关系靓题拾贝三角形的三边关系:(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.注意:这里的“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值. 一、 判断三条已知线段能否组成三角形【例1】已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 ( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10解:选C .对于A ,1+2=3,所以A 不能,对于B ,2+5<8,所以B 不能,对于D ,4+5<10,所以D 不能. 二、已知三角形的周长,判断三边能否组成等腰三角形【例2】将长度为12m 的一根铁丝,截成三段,能围成等腰三角形的是 ( ) A.8m ,2m ,2m B.7m ,2.5m ,2.5m C.6m ,3m ,3m D.1m ,5.5m ,5.5m 解:选D .根据三边关系,三个选项A 、B 、C 均有两边之和小于或等于第三边. 三、已知三角形的两边长,求第三边取值的个数【例3】已知三角形的三边长分别是3、8、x ,若x 的值为偶数,则x 的值有 ( ) A.6个 B.5个 C.4个 D.3个解:选D .根据三角形三边关系有:8-3<x <8+3即5<x <11,若x 为偶数,则x=6,8,10.1.探新知 预习乐园提素能 自测自评A B ECD O214版北师七上学案教用P12左上T22.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为( ) A .30B .50C .90D 100.3.下列图形中,哪一幅成轴对称( )4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )A.6个B.5个C.4个D.3个5.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取 了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )A.5mB.15mC.20mD.28m6.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为______.7.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .8.两根木棒的长分别是8cm ,10cm ,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x 的取值范围是________.9.如图所示,在△ABC 中,D ,E 是BC ,AC 上的两点,连结BE ,AD 交于F ,(1)图中有几个三角形?并表示出来;(2)△BDF 的三个顶点是什么?三条边是什么? (3)AB 边是哪些三角形的边? (4)F 点是哪些三角形的顶点?10.一个等腰三角形的周长是36 cm .(1)已知腰长是底边长的2倍,求各边的长; (2)已知其中一边长8cm ,求另外两边的长.11.已知三角形的两边长分别是4cm 和9cm .(1)求第三边的取值范围; (2)已知第三边长是偶数,求第三边长;(3)求周长的取值范围.12.(全家总动员)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式",很长时间没有人答出,小兰仅仅拿出了一面镜子,就很快解决了这道题目,你知道她是怎样做的吗?答案探新知,预习乐园:一、1.互相重合 对称轴2.(1)(2)(4)(5)是轴对称图形,都有2条对称轴,(3)是轴对称图形,有无数条对称轴。