5.2 探索轴对称的性质
- 格式:ppt
- 大小:1.08 MB
- 文档页数:31
北师大版数学七年级下册5.2《探索轴对称的性质》教案一. 教材分析《探索轴对称的性质》这一节的内容,主要让学生了解轴对称的性质,并学会运用这些性质解决实际问题。
教材通过丰富的图片和实例,引导学生发现轴对称图形的性质,从而培养学生的观察能力、思考能力和实践能力。
二. 学情分析学生在七年级上册已经学习了轴对称的概念,对轴对称有了初步的认识。
但他们对轴对称的性质的理解还不够深入,本节课需要通过大量的实例和活动,让学生在实践中发现和总结轴对称的性质。
三. 教学目标1.知识与技能:让学生掌握轴对称的性质,并能运用性质解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生发现规律、总结规律的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:轴对称的性质。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考。
2.情境教学:利用图片、实例,创设情境,让学生在实践中学习。
3.小组合作:引导学生分组讨论,共同解决问题。
六. 教学准备1.准备相关的图片和实例,用于引导学生发现轴对称的性质。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生回顾轴对称的概念,激发学生对轴对称性质的兴趣。
2.呈现(10分钟)展示一系列具有对称性的图形,让学生观察并思考:这些图形有什么共同的特点?引导学生发现轴对称图形的性质。
3.操练(10分钟)让学生分组讨论,每组选择一个图形,尝试找出它的对称轴,并总结对称轴的特点。
然后,让学生尝试运用轴对称的性质解决实际问题。
4.巩固(10分钟)针对学生找出的对称轴,设计一些练习题,让学生解答,以巩固所学知识。
5.拓展(5分钟)引导学生思考:轴对称性质在实际生活中的应用。
可以让学生举例说明,也可以让学生自己设计一些应用场景。
6.小结(5分钟)对本节课的内容进行总结,强调轴对称的性质及其应用。
§5.2 探索轴对称的性质学习目标:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
学习重点:理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质。
学习难点:运用对称轴的性质画出简单平面图形经过轴对称后的图形。
一、自主学习:预习书118~119页并思考以下问题:1.轴对称中的对应点是否关于对称轴对称?为什么?2.对应点所连的线段是否仍然关于原来的对称轴对称?由此我们可以得到对应点所边的线段与对称轴是什么关系?3.轴对称有哪些性质?(1)在轴对称图形中对应点所连的线段被对称轴_______。
(2)对应线段_______,对应角_______。
(3)轴对称图形变换的特征是不改变图形的_______和_______,只改变图形的式_______。
(4)成轴对称的两个图形,它们的对应线段或其延长线相交,交点在_______上。
二、合作探究:1.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称点是B′,•如图所示,则与线段BC相等的线段是______,与线段AB相等的线段是_______和_______.•与∠B 相等的角是_______和_______,因此,∠B=________.2.如图,牧童在A处放牛,其家在B处。
A、B到河岸的距离分别为AC、BD,且AC=BD,已知A到河岸CD的中点的距离为500米。
(1)牧童从A 处把牛牵到河边饮水后再回家,试问在何处饮水,所走的路程最短?在图中作出该处并说出理由。
(2)最短路程是多少米?三、展示点拨:3.如图,在金水河的同一侧居住两个村庄A 、B ,要从河边同一点修两条水渠到A 、B 两村浇灌蔬菜,问抽水站应修在金水河MN 何处到村庄A 、B 距离一样?4.如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的点F 处,如果∠BAF =60°,那么∠DAE =_________.四、达标检测:5.以下结论正确的是( ).A .两个全等的图形一定成轴对称B .两个全等的图形一定是轴对称图形C .两个成轴对称的图形一定全等D .两个成轴对称的图形一定不全等6.下列说法中正确的有( ).①角的两边关于角平分线对称; ②两点关于连接它的线段的中垂线为对称; A B C D 河M N A 。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天参军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马〞的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的间隔和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的间隔之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的间隔之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d〔动点M位于动点N左侧〕,使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
北师大版数学七年级下册第五单元5.2探索轴对称的性质课时练习一、选择题 (共15题)1.下列说法正确的是( )A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形答案:B解析:解答:根据轴对称的性质,A 全等三角形不一定关于某直线对称,故错;C 直角三角形中,等腰直角三角形是轴对称图形,其他一般的直角三角形不是,故错;D 锐角三角形不一定是轴对称图形,如三个角分别是50°、60°、70°的三角形就不是轴对称图形.故选B.分析:本题考察轴对称的性质,关键是把握住对称一定全等,但反过来不成立.2.下列说法中正确的有( )①角的两边关于角平分线对称; ②两点关于连结它的线段的中垂线对称③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称④到直线l 距离相等的点关于l 对称A.1个B.2个C.3个D.4个答案:B解析:解答:根据轴对称的性质,①应该为角的两边关于“角平分线所在直线”对称; ②“两点关于连结它的线段的中垂线对称”正确; ③“成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称”正确;④“到直线l 距离相等的点关于l 对称”不正确;故选B.分析:本题容易出错的是最后一个,可以通过下图来说明: lABCD3.下列说法错误的是( )A.等边三角形是轴对称图形;B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分答案:C解析:解答:根据轴对称的性质可知,A、B、D都成立,故选C.分析:本题思路的关键是考虑线段与对称轴的相对位置,可以通过下图来说明:lB'A'AB4.观察下列平面图形:其中属于轴对称图形的有( )A.1个B.2个C.3个D.4个答案:C解析:解答:根据轴对称的性质可知,前三个图形分别有5条、5条、3条对称轴,最后一个图形三角形内的图案没有对称轴,故选C.分析:本题思路的关键是利用轴对称的性质,不但要看图形的外部图案,还要考虑到图形的内部图案,必须沿某条直线折叠后都能够重合,才能判断是轴对称图形.5.如图所示,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的像( )A.2个B.4个C.16个D.无数个答案:D解析:解答:∵两块镜面相对∴在每一块镜面中,都能有对方镜面的图像∴小凳在每一个镜面中都有图像∵第一镜面中的小凳都在对面镜子中有图像∴循环往复,图像无数故选D分析:本题思路的关键是利用轴对称的性质,得到镜面在对方镜子中的图像无数,相应得到小凳的图像无数,还可以通过实际操作来解决思维上的困惑.6.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形答案:A解析:解答:∵这个三角形是轴对称图形∴一定有两个角相等∴这是一个等腰三角形∵有一个内角是60°∴根据有一个角是60°的等腰三角形是等边三角形得这是一个等边三角形分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,从而得到等腰三角形,再根据等边三角形的判定方法得到结论.7.以下结论正确的是( ).A.两个全等的图形一定成轴对称 B.两个全等的图形一定是轴对称图形C.两个成轴对称的图形一定全等 D.两个成轴对称的图形一定不全等答案:C解析:解答:根据轴对称的性质,可以判断A中说法错误,应该是轴对称的两个图形一定全等,反过来不对;B中前后矛盾,两个全等的图形,是指两个图形,而后面的轴对称图形是指一个图形;D中根据轴对称的性质可以知道,成轴对称的两个图形,一定全等,所以D错;故选C.分析:此题解决的关键是正确理解成轴对称的两个图形的关系,以及轴对称图形的意义. 8.两个图形关于某直线对称,对称点一定( )A.这直线的两旁 B.这直线的同旁 C.这直线上 D.这直线两旁或这直线上答案:D解析:解答:这是考察对成轴对称的两个图形的位置的理解,成轴对称的两个图形的对称点,或者在对称轴上,或者在对称轴两旁.故选D.分析:此题解决的关键是正确理解成轴对称的两个图形的位置关系,思维含量低.9.轴对称图形沿对称轴对折后,对称轴两旁的部分( )A.完全重合B.不完全重合 C.两者都有 D.不确定答案:A解析:解答:这是直接考察轴对称图形的意义,故选A.分析:此题解决的关键是正确理解轴对称图形的意义,思维含量低.10.下面说法中正确的是( )A.设A、B关于直线MN对称,则AB垂直平分MN.B.如果△ABC≌△DNF,则一定存在一条直线MN,使△ABC与△DNF关于MN对称.C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形.D.两个图形关于MN对称,则这两个图形分别在MN的两侧.答案:C解析:解答:A中应该是直线MN垂直平分线段AB;B中错在全等,不一定对称;D中错在这两个图形不一定要在直线两侧,可以直线两侧都有.故选C.分析:此题中最不好理解的是对于D的判断,可以用下图去理解.E DABC11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个答案:D解析:解答:此题根据轴对称的性质容易得到结果,特别是对于②③④,可以通过画图来确定一下.分析:此题需要注意一下题干中的“互不平行”这个词语.否则对于②的判断就会出错. 12.下列推理中,错误的是( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形答案:B解析:解答: A正确;B重复且条件不足;C可以得到三个角都是60°,正确; D根据有一个角是60°的等腰三角形是等边三角形可以得到.故选B.分析:本题容易出错的是看到B 选项中,既有边相等,又有角相等,就判断正确.此题不难,但是容易出错.13.对于下列命题:①关于某一直线成轴对称的两个三角形全等;②等腰三角形的对称轴是顶角的平分线;③一条线段的两个端点一定是关于经过该线段中点的直线的对称点;④如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为( )A .0B .1C .2D .3答案:B解析:解答: 根据轴对称的性质知①正确;②对称轴是直线,但顶角的平分线不是直线,故错;经过该线段中点的直线还需要垂直于这条线段才正确;④全等三角形不一定关于某直线对称,故错.综上,只有①是正确的,故选B分析:本题容易出错的是对②③的判断.需要明确的是,对称轴是直线;经过线段中点的直线可以有无数条,因此必须是垂直于这条线段的才是对称轴.14.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为( )A .BD >CDB .BD =CDC .BD <CD D .BD 与CD 大小关系无法确定 答案:D解析:解答: 根据图示,很明显可以看到有三种情况:(1) BD >CD (2) BD =CD (3) BD <CD (1)BC AD (2)B C AD (3)BC AD故选D分析:本题关键是考虑到,把点D放在线段AD的垂直平分线上,通过运动来研究BD与CD的大小关系,这样就不会出错了.15.在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为( )A.平行 B.垂直且平分 C.斜交 D.垂直不平分答案:B解析:解答:∵等腰△ABC中,AB=AC∴将等腰△ABC中折叠,使B与C重合,则点A在折痕上∴点A在线段BC的对称轴上∵OB=OC∴点O在折痕上∴点O在线段BC的对称轴上∴直线AO就是线段BC的对称轴∴直线AO与底边BC垂直且平分故选B分析:本题关键是利用折叠来引入,从而利用轴对称的性质解决问题.二、填空题(共5题)16.设A、B两点关于直线MN轴对称,则_______垂直平分________.答案:直线MN|线段AB解析:解答:∵A、B两点关于直线MN轴对称∴由轴对称的性质可得直线MN垂直平分线段AB分析:本题易错处是漏掉直线与线段这些表达线的类型的词语.17.若直角三角形是轴对称图形,则其三个内角的度数分别为________.答案:90°|45°|45°解析:解答:∵直角三角形是轴对称图形∴一定有两个角相等又直角三角形一定有一个角为90°∴相等的是两个锐角∵直角三角形的两个锐角互余∴每一个锐角为45°分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,再根据直角三角形的两个锐角互余,进而求出各角度数.18.已知在Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴是B',如图所示,则与线段BC 相等的线段是____,与线段AB 相等的线段是_______和_______,•与∠B 相等的角是________和_______,因此可得到∠B =________.B 'C B A答案:B ’C |AB ′|B B ’|∠B ’|∠BAB ’|60°解析:解答:∵以直线AC 为对称轴,点B 的对称轴是B '∴B ’C =BC ∠B ’CA =∠BCA =90° AB ’=AB =2BC∴AB ’=AB =BB ’∴∠B ’ =∠B =∠B ’AB =60°分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,再根据AB =2BC ,得到一个等边三角形,进而求出各角度数.19.如图,已知点A 、B 直线MN 同侧两点, 点A ’、A 关于直线MN 对称.连接A ’B 交直线MN 于点P ,连接AP .若A ’B =5cm ,则AP +BP 的长为 N MP A'BA答案:5cm解析:解答:∵点A ’、A 关于直线MN 对称点P 在对称轴MN 上,∴A ’P 、AP 关于直线MN 对称∴A ’P =AP∴AP +BP = A ’P +PB =A ’B =5cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出AP +BP 的长.20.如图,∠AOB 内一点P ,分别画出P 关于OA 、OB 的对称点P 1、P 2连P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长为 .答案:5cm解析:解答:∵P、P1,P、P2关于OA、OB对称∴PM=P1M,PN=P2N∴△PMN的周长=P1P2∴△PMN的周长是5 cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出△PMN的周长.三、解答题( 共5题)21.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.(1) (2) (3)答案:第一个图形是轴对称图形,如图,若以NF为对称轴,则点A与点B、点M与点N、点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC与∠BND等是对应角.解析:解答:如上图所示,第一个图形是轴对称图形,若以NF为对称轴,则点A与点B、点M与点N、点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A 与∠B 、∠C 与∠D 、∠AMC 与∠BND 等是对应角.本题解答只是回答了其中一种情况,而原来的图形,还可以以直线MN 为对称轴来进行回答.分析:本题易错点是被忽视了阴影部分.如果没有阴影,那么可以有六种不同情况;因为有了阴影部分,所以原题的解答只能有两种情况,这是需要注意的.22. 如图,△ABC 关于直线L 的轴对称图形是△DNF , 如果△ABC 的面积为6CM 2,且DN =3CM , 求△ABC 中AB 边上的高h .答案:h=4cm解析:解答:∵△ABC 关于直线L 的轴对称图形是△DNF∴△DNF 的面积等于△ABC 的面积= 6cm 2AB =DN =3cmDN 上的高等于AB 上的高∴h=6×2÷3=4cm分析:本题思路的关键是利用轴对称图形的性质,得到面积相等,对应边相等以及对应线段相等.23.小红想在卧室放一穿衣镜,能看到自己的全身像,那么她至少应买多高(宽度适当)的穿衣镜?ABC DA B '答案:镜高至少为身高的一半 解析:解答:如下图所示,设小红用线段AB 表示,则A 头部,通过镜子下沿D 处可以看到自己的脚的映像,而根据轴对称的性质,可以通过镜子顶端C 处看到自己的头部映像,因此,镜子调试至少需要自己身体的一半高度.分析:本题思路的关键是既要考虑到关于点的对称,又要考虑到关于线的对称.24.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)(1)答案:中(2)答案:林(3)答案:南(4)答案:京(5)答案:米解析:解答:根据汉字的对称结构来确定是哪个汉字,对于第(1)个图,思考可能是口或中,但是口没有那么扁平;故为中;第二个图左边应该也是一个木,这样原来的汉字应该是林;第三个图形,根据轴对称可以容易得到是一个南字;第四个从对称上来研究,应该左边下方也有一个点,再考虑对称轴上可能有笔画,容易得到是京字;第五个图,从对称可以得到右边有点、横、捺,可是不是我们所学过的汉字,再考虑对称轴上的笔画,可以有个竖,因此得到最后一个字是米。
专题5.2探索轴对称的性质姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•铜梁区校级期中)如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠B=30°,∠2=25°,则∠1的度数是()A.55°B.65°C.75°D.85°【分析】设直线m交AB于点E,交BC于点F,利用折叠的性质可得出∠BEF=∠DEF,∠BFE=∠DFE,∠D=∠B=30°,由邻补角互补及∠2的度数,可求出∠DFE的度数,在△DEF中利用三角形内角和定理可求出∠DEF的度数,再结合∠BEF+∠DEF+∠1=180°,即可求出∠1的度数.【解析】设直线m交AB于点E,交BC于点F,如图所示.由折叠可知:∠BEF=∠DEF,∠BFE=∠DFE,∠D=∠B=30°.∵∠BFE+∠CFE=180°,∠DFE=∠CFE+∠2=∠CFE+25°,∴∠DFE(∠BFE+∠CFE+∠2)(180°+25°)=102.5°,∴∠DEF=180°﹣∠D﹣∠DFE=180°﹣30°﹣102.5°=47.5°.又∵∠BEF+∠DEF+∠1=180°,∴∠1=180°﹣∠BEF﹣∠DEF=180°﹣2×47.5°=85°.故选:D.2.(2020秋•天河区期中)如图,若△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O.则下列说法中不一定正确的是()A.∠ABC=∠A'B'C′B.AA'⊥MNC.AB∥A′B′D.BO=B′O【分析】根据轴对称的性质解决问题即可.【解析】∵△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O,∴△ABC≌△A'B'C′,AA′⊥MN,OB=OB′∴∠ABC=∠A′B′C′,故A,B,D正确,故选:C.3.(2020秋•玄武区期中)如图,△ABC和△AB'C'关于直线l对称,l交CC'于点D,若AB=4,B'C'=2,CD=0.5,则五边形ABCC′B'的周长为()A.14 B.13 C.12 D.11【分析】直接利用轴对称的性质得出AB=AB′,BC=B′C′,DC=DC′,再用周长公式即可得出答案.【解析】∵△ABC和△AB'C'关于直线l对称,l交CC'于点D,∴AB=AB′,BC=B′C′,DC=DC′,∵AB=4,B'C'=2,CD=0.5,∴AB′=4,BC=2,DC′=0.5,∴五边形ABCC′B'的周长为:4+2+0.5+0.5+2+4=13.故选:B.4.(2020春•招远市期末)如图,将一张长方形纸片ABCD沿AE折叠,若∠BAD'=28°,则∠AED'等于()A.28°B.59°C.66°D.68°【分析】根据折叠可得∠D′=∠D=90°,∠DAE=∠D′AE∠DAD′(90°﹣28°)=31°,进而根据直角三角形的性质可以求解.【解析】根据折叠可知:∠D′=∠D=90°,∠D′AE∠DAD′(90°﹣28°)=31°,∴∠AED′=90°﹣31°=59°.故选:B.5.(2020春•郫都区期末)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(2020春•双阳区期末)如图,正方形的边长为2,则图中阴影部分的面积为()A.2 B.4 C.8 D.无法确定【分析】正方形是轴对称图形,根据对称性可以将图形中带阴影的图形面积等于正方形面积的一半,进而得出答案.【解析】如图所示:图中阴影部分的面积为正方形面积一半:22=2.故选:A.7.(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解析】∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.8.(2020•天河区一模)如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE=4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm【分析】由折叠的性质得AD=BD,BE=AE=4,△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD ﹣AD=AB,即可得出结果.【解析】∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.9.(2020春•丹阳市期末)△ABC中,∠BAC>∠B,∠C=50°,将∠B折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.40°或25°B.25°或32.5°C.40°或25°或32.5°D.65°或80°或50°【分析】分三种情形分别求解即可.【解析】当∠APC=∠C=50°时,∵∠B=∠P AB,∠APC=∠B+∠P AB=50°,∴∠B=25°,当∠P AC=∠C=50°时,∠APC=180°﹣50°﹣50°=80°,∴∠B∠APC=40°,当∠CAP=∠CP A(180°﹣50°)=65°时,∠B∠CP A=32.5°,故选:C.10.(2020•台安县一模)如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是8cm,则∠AOB的度数是()A.30°B.40°C.50°D.60°【分析】分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解析】分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB∠COD,∵△PMN周长的最小值是8cm,∴PM+PN+MN=8,∴DM+CN+MN=8,即CD=8=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•白云区期末)如图,把一张长方形的纸沿对角线折叠,请写出一对相等的锐角:∠ADB=∠CBD或∠EBD=∠CBD或∠ADB=∠EBD(不增加字母,写出一对符合条件的角即可).【分析】由平行线的性质得出∠ADB=∠CBD,由折叠的性质得∠EBD=∠CBD,则可得出答案.【解析】∵四边形ABCD是长方形,∴AD∥BC,∴∠ADB=∠CBD,由折叠的性质得:∠EBD=∠CBD,∴∠ADB=∠EBD,故答案为:∠ADB=∠CBD或∠EBD=∠CBD或∠ADB=∠EBD.12.(2020秋•南关区校级期末)如图,三角形纸片ABC中∠A=80°,∠B=60°,将纸片一角折叠,使点C落在△ABC的内部C′处,若∠2=38°,则∠1=42°.【分析】首先证明∠1+∠2=2∠C,利用这个结论解决问题即可.【解析】设折痕为EF,连接CC′.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=2∠ECF,∵∠C=180°﹣∠A﹣∠B=180°﹣80°﹣60°=40°,∴∠1=80°﹣38°=42°,故答案为:42°.13.(2020秋•中山区期末)如图,三角形纸片ABC中,∠ACB=90°,在BC边上取一点P,沿AP折叠,使点B与AC延长线上的点D重合,∠CPD=40°,则∠P AC=20°.【分析】由折叠的性质是出∠DAP=∠BAP,∠D=∠B,求出∠B=50°,则可得出答案.【解析】∵△APB沿AP折叠,∴∠DAP=∠BAP,∠D=∠B,∵∠CPD=40°,∠ACB=90°,∴∠D=∠ACB﹣∠CPD=90°﹣40°=50°,∴∠B=50°,∴∠DAB=90°﹣∠B=90°﹣50°=40°,∴∠P AC∠DAB40°=20°.故答案为:20.14.(2020秋•盐都区期末)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为100度.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故答案为:100.15.(2020秋•大武口区期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为 4.5cm.【分析】由轴对称的性质可知:PM=MQ,PN=RN,先求得QN的长度,然后根据QR=QN+NR即可求得QR的长度.【解析】由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(2020秋•淮南期末)如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为100°.【分析】如图,由三角形内角和定理求出∠B+∠C=40°;证明∠ADE+∠AED=2(α+β)=80°,即可解决问题.【解析】如图,∵∠BAC=140°,∴∠B+∠C=180°﹣140°=40°;由题意得:∠B=∠DAB(设为α),∠C=∠EAC(设为β),∴∠ADE=2α,∠AED=2β,∴∠DAE=180°﹣2(α+β)=180°﹣80°=100°,故答案为100°.17.(2020秋•南岗区校级月考)如图,∠AOB=30°,P1、P2两点关于边OA对称,P2、P3两点关于边OB 对称,若OP2=3,则线段P1P3=3.【分析】如图,连接OP1,OP2.证明△OP1P3是等边三角形即可.【解析】如图,连接OP1,OP2.∵P1、P2两点关于边OA对称,P2、P3两点关于边OB对称,∴OP2=OP1=OP3=3,∠AOP2=∠AOP2,∠BOP2=∠BOP3,∵∠AOB=30°,∴∠P1OP3=2∠AOB=60°,∴△P1OP3是等边三角形,∴P1P3=OP1=3,故答案为:3.18.(2020秋•讷河市期末)如图∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是15.【分析】根据题意画出符合条件的图形,求出OD=OE=OP,∠DOE=60°,得出等边三角形DOE,求出DE=5,求出△PMN的周长=DE,即可求出答案.【解析】作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°═60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15,故答案为15.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•延边州期末)如图,把直角三角形放置4×4方格纸上,三角形的顶点都在格点上.在方格纸上用三种不同的方法画出与已知三角形成轴对称的三角形.(要求:画出的三角形的顶点都在格点上,不涂黑)【分析】直接利用轴对称图形的性质进而得出符合题意的答案即可.【解析】如图1,2,3所示,即为所求;.20.(2020春•江阴市期末)如图,直角三角形纸片ABC中,∠C=90°,将纸片沿EF折叠,使得A点落在BC上点D处,连接DE,DF.△CDE中有两个内角相等.(1)若∠A=50°,求∠BDF的度数;(2)若△BDF中也有两个内角相等,求∠B的度数.【分析】(1)依据∠C=90°,且△CDE中有两个内角相等,可得∠CED=∠CDE=45°,再根据折叠的性质,即可得到∠BDF的度数;(2)设∠EDF=∠EAF=x°,即可得到∠BDF=180°﹣45°﹣x°=(135﹣x)°,∠B=(90﹣x)°,∠BFD=180°﹣(135﹣x)°﹣(90﹣x)°=(2x﹣45)°,再分三种情况讨论,即可得到∠B的度数可能为45°或30°.【解析】(1)∵∠C=90°,且△CDE中有两个内角相等,∴∠CED=∠CDE=45°,∵△EDF是由△EAF翻折得到,∠A=50°,∴∠EDF=∠A=50°,∴∠BDF=180°﹣∠CDE﹣∠EDF=180°﹣45°﹣50°=85°;(2)设∠EDF=∠EAF=x°,∴∠BDF=180°﹣45°﹣x°=(135﹣x)°,∠B=(90﹣x)°,∴∠BFD=180°﹣(135﹣x)°﹣(90﹣x)°=(2x﹣45)°,∵△BDF中有两个内角相等,可分三种情况讨论:①当∠BDF=∠B时,令135﹣x=90﹣x,则方程无解,∴此情况不成立,舍去;②当∠BFD=∠B时,令2x﹣45=90﹣x,解得x=45,∴∠B=90°﹣45°=45°;③当∠BFD=∠BDF时,令2x﹣45=135﹣x,解得x=60,∴∠B=90°﹣60°=30°,综上所述,若△BDF中也有两个内角相等,则∠B的度数可能为45°或30°.21.(2020秋•肇源县期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为多少.【分析】根据轴对称的性质得到OA垂直平分PQ,OB垂直平分PR,则利用线段垂直平分线的性质得QM=PM=2.5cm,RN=PN=3cm,然后计算QN,再计算QN+RN即可.【解析】QR=4.5cm,理由如下:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR.∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,NQ=MN﹣MQ=4﹣2.5=1.5(cm).∴QR=RN+NQ=3+1.5=4.5(cm).22.(2020秋•洮北区期末)如图,点P关于OA、OB轴对称的对称点分别为C、D,连结CD,交OA于M,交OB于N.(1)若CD的长为18厘米,求△PMN的周长;(2)若∠C=21°,∠D=28°,求∠MPN的度数.【分析】(1)直接利用轴对称图形的性质进而得出对应线段关系即可得出答案;(2)直接利用轴对称图形的性质进而得出对应角关系即可得出答案.【解析】(1)∵点P关于OA,OB的轴对称点分别为C、D,连接CD,交OA于M,交OB于N,∴PM=CM,ND=NP,∵△PMN的周长=PN+PM+MN,PN+PM+MN=CD=18cm,∴△PMN的周长为:18cm;(2))∵P关于OA、OB的对称,∴OA垂直平分PC,OB垂直平分PD,∴CM=PM,PN=DN,∴∠C=∠MPC,∠D=∠NPD,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∠CPD+∠O=180°,∵∠D+∠C+∠CPD=180°,∴∠C+∠D=∠O=49°,∴∠MPN=180°﹣49°×2=82°.23.(2020秋•西陵区校级期中)如图的三角形纸板中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边的点E处,折痕为BD.(1)求△AED的周长;(2)若∠C=100°,∠A=50°,求∠BDE的度数.(1)先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE的周长=AC+AE,【分析】即可得出答案;(2)由折叠的性质可得∠C=∠DEB=100°,∠BDE=∠CDB,由三角形的外角性质可得∠ADE=50°,即可求解.【解析】(1)由折叠的性质得:BE=BC=6cm,DE=DC,∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm);(2)由折叠的性质得∠C=∠DEB=100°,∠BDE=∠CDB,∵∠DEB=∠A+∠ADE,∴∠ADE=100°﹣50°=50°,∴∠BDE=∠CDB65°.24.(2020秋•和平区期中)在△ABC中,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC 所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E.(1)如图①,求∠ACD,∠E的大小;(2)如图②,连接BE,求证AB⊥BE.【分析】(1)由三角形内角和定理可求∠ACB=120°,由折叠的性质可得∠B=∠ADC=45°,∠CAD =∠BAC=15°,∠ACB=∠ACD=120°,由三角形的外角性质可求解;(2)由周角的性质可得∠BCE=120°=∠ACB,由“SAS”可证△ABC≌△EBC,可得∠ABC=∠EBC =45°,可得结论.【解析】(1)∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠B=∠ADC=45°,∠CAD=∠BAC=15°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC=15°,∴∠E=∠ADC﹣∠DAE=30°;(2)∵∠CAE=∠CAD+∠DAE=30°,∴∠E=∠CAE=30°,∴AC=CE,∵∠ACB=∠ACD=120°,∴∠BCE=120°=∠ACB,在△ABC和△EBC中,,∴△ABC≌△EBC(SAS),∴∠ABC=∠EBC=45°,∴∠ABE=90°,∴AB⊥BE.。
《探索轴对称的性质》主题说明基本信息县(市、区)学校姓名学科数学能力维度□学情分析 教学设计□学法指导□学业评价所属环境 多媒体教学环境□混合学习环境□智慧学习环境微能力点A3演示文稿设计与制作教学环境多媒体教学环境信息技术希沃白板课题名称北师大版七年级下册第五章《5.2 探索轴对称的性质》教学对象7(16)班全体学生教学重点1.掌握轴对称的性质:对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2.运用轴对称的性质解决实际问题。
学习难点通过活动操作探索出轴对称的性质,并灵活运用轴对称的性质解决实际问题。
主要内容一、情境激趣引入新课1、观察图形,分辨哪些是轴对称图形哪些是两个图形成轴对称?提问:什么是轴对称图形?什么是成轴对称?【希沃课件】通过希沃白板拖拽功能,进行分类整理,让学生在实际操作中梳理判断过程。
2、【希沃课件】观察动画后回答(1)动画(1)中的两个三角形有什么关系?(2)动画(2)中的三角形是个什么图形?课前先通过观察图片及形象直观地动画演示对轴对称图形和两个图形成轴对称的特征进行复习,加强学生的学习目的。
让学生对本节课产生好奇,有想继续探究求知欲望。
二、自主探索获得新知探究定义活动一:如图所示,把一张纸折叠后,用针扎一个孔;再把纸展开,两针孔分别记为点A、点A′,折痕记为l ;连接AA′,AA′与l相交于点O .学生观察并思考:点A与点A′有什么关系?线段AA′与直线l有什么数量和位置关系?活动二:仿照上面的操作,在对折后的纸上扎出线段AB,把纸展开后记右边的那条线段为A′B′,连接A A′ 、BB′.你有什么新的发现?AB 与A′ B′有什么关系?学生通过观察思考、分析发现AB =A′B′活动三:如图,在对折后的纸上扎一个三角形,把纸展开后记这两个三角形为△ABC和△A′B′C′。
小组合作交流:(1)△ABC与△A′B′C′有什么关系?(2)设折痕所在直线为l,连结点A和A′的线段和l有什么关系?点B和B′呢?点C和C′呢?(3)线段AB与线段A′B′有什么关系?BC与B′C′呢?AC与A′C′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?你能得出什么结论?师生归纳(板书):成轴对称的两个图形具有以下性质:1、两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分. 2.对应线段相等 .3.对应角相等。
探索轴对称的性质燕山中学庄晓燕教学目标:知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
过程与方法:经历探索轴对称的性质的过程,在操作活动和观察分析过程中发展学生主动探究和合作交流的习惯,培养学生观察、探索、归纳、说理等能力。
情感、态度与价值观:通过学生欣赏生活中的轴对称图形和操作活动,培养其空间观念和审美意识,体会轴对称在生活中的广泛应用,提高他们的学习兴趣和数学素养。
重点:探索轴对称性质。
运用轴对称的性质解决简单的实际问题。
难点:“对应点所连的线段被对称轴垂直平分”的探索及灵活运用轴对称的性质。
教具学具:多媒体、课件,长方形白纸一张,圆规、刻度尺,平面镜、写有的纸片。
教学过程:一.创设情境,引入新课。
欣赏两副图片,说出他们的区别和联系,让学生明白轴对称与轴对称图形是相对而言的,它们之间有很多共同的性质,从而引入新课。
二.动手操作,探索性质第一环节:探究1:活动(一):1. 将长方形纸对折,用圆规尖或笔尖扎出一个点, 然后把纸打开铺平,得到的点分别记为A 和A′,折痕所在的直线为l 。
(如下图:)点A和点A′有什么关系?2.将长方形纸对折,再扎出一个点, 然后把纸打开铺平,得到的点分别记为 B 和 B′.点B 和点B′有什么关系?在轴对称图形中,沿对称轴对折后,能够互相重合的点叫对应点(对称点)。
3. 连接点A和点A′,点B和点B′,与对称轴分别交与点D,E。
4.(1)观察、交流:图中有哪些相等的线段?线段AA′与直线l有什么关系?线段BB′与直线l有什么关系?说说你的理由 .活动(二):1. 将长方形纸对折,再扎出一个与点A、B不在同一直线上的点, 然后把纸打开铺平,得到的点分别记为C 和C′.连接AB, A′B′,AC, A′C′,BC,B′C′。
2. △ABC 与 △A ′B ′C ′有什么关系?3.(1)观察、 交流:线段AB 与A ′B ′有什么关系?线段AC 与A ′C ′有什么关系?线段BC 与B ′C ′呢?说说你的理由 .在轴对称图形中,沿对称轴对折后,能够互相重合的线段叫对应线段。