高考数学一轮复习第八章立体几何第五节空间向量及其运算和空间位置关系课件理
- 格式:ppt
- 大小:4.88 MB
- 文档页数:15
专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。
归纳与技巧:空间向量及其运算和空间位置关系基础知识归纳一、空间向量及其有关概念OP=x OA+y OB+z OC且x+二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一的.基础题必做1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是()A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选C∵c=(-4,-6,2)=2a,∴a∥c.又a·b=0,故a⊥b.2.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选C若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A、B、C、D是空间任意四点,则有AB+BC+CD+DA=0;②若MB=x MA+y MB,则M、P、A、B共面;③若p=x a+y b,则p与a,b共面.其中正确的个数为()A.0B.1C.2 D.3解析:选D可判断①②③正确.4.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________(用a,b,c表示).解析:如图,OE=12OA+12OD=12OA +14OB +14OC =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A +11A D +11A B )2=311A B 2=3,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确.答案:①②解题方法归纳1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .[自主解答] 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG . 解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c解题方法归纳用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.解析:∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13共线、共面向量定理的应用典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED '=a ,EF =b ,EH =c ,则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面. 解题方法归纳应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA =λPB 且同过点P MP =x MA +y MB对空间任一点O,OP=OA→+t AB对空间任一点O,OP=OM+x MA+y MB对空间任一点O,OP=x OA+(1-x)OB对空间任一点O,OP=x OM+y OA+(1-x-y)OB以题试法2.已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法,求证:(1)E、F、G、H四点共面;(2)BD∥平面EFGH.证明:(1)连接BG,则EG=EB+BG=EB+12(BC+BD)=EB+BF+EH=EF+EH,由共面向量定理知:E、F、G、H四点共面.(2)因为EH=AH-AE=1 2AD-12AB=12(AD-AB)=12BD,又因为E、H、B、D四点不共线,所以EH∥BD.又EH⊂平面EFGH,BD⊄平面EFGH,所以BD∥平面EFGH.利用空间向量证明平行或垂直典题导入[例3]已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,边长为2a,AD=DE=2AB,F为CD的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0, ∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .解题方法归纳利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3. 如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1. 若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则下列向量中与BM 相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM =1BB +1B M =1AA +12(AD -AB )=c +12(b -a )=-12a +12b +c .4. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( ) A .0 B.12 C.32D.22解析:选A 设OA =a ,OB =b ,OC =c , 由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ·BC =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA ,BC 〉=0. 5. 平行六面体ABCD -A 1B 1C 1D 1中,向量AB 、AD 、1AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于( )A .5B .6C .4D .8解析:选A 设AB =a ,AD =b ,1AA =c ,则1AC =a +b +c , 1AC 2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC |=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ =λMN 的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM =2OA -OB -OC ;②OM =15OA +13OB +12OC ;③MA +MB +MC =0;④OM +OA +OB +OC =0.解析:∵MA +MB +MC =0,∴MA =-MB -MC ,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB ―→·1B E =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP ,AE 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP =(0,0,a ),AE =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP ,AE 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC ·CD =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD =⎝⎛⎭⎫-12,36,0.又AE =⎝⎛⎭⎫14,34,12, ∴AE ·CD =-12×14+36×34=0, ∴AE ⊥CD ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD =⎝⎛⎭⎫0,233,-1. 又AE ·PD =34×233+12×(-1)=0, ∴PD ⊥AE ,即PD ⊥AE .∵AB =(1,0,0),∴PD ·AB =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB =(1,0,0),AE =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD =⎝⎛⎭⎫0,233,-1,显然PD =33n . ∵PD ∥n ,∴PD ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD∥平面ABE;(2)求证:AC⊥BE.证明:(1)如图1,设M为BC的中点,连接DM、MF.∵F为AC的中点,M为BC的中点,∴MF∥AB.又∵BM綊DE,∴四边形BMDE为平行四边形,∴MD∥BE.∵MF∩MD=M,AB∩BE=B,∴平面DFM∥平面ABE.又∵PD⊂平面DFM,FD⊄平面ABE,∴FD∥平面ABE.(2)在矩形ABCD(如图2)中,连接AC,交BE于G.BE·AC=(BA+AE)·(AB+BC)=-AB2+AE·BC=-36+36=0.∴AC⊥BE.∴在图3中,AG⊥BE,CG⊥BE.又∵AG∩GC=G,∴BE⊥平面AGC.又∵AC⊂平面AGC,∴AC⊥BE.12.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.解:(1)证明:如图,在平面ABCD内过点D作直线DF∥AB,交BC于点F,以D为坐标原点,DA、DF、DP所在的直线分别为x、y、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).(1)设PD =a ,则P (0,0,a ),BD =(-1,-3,0),PC =(-3,3,-a ),∵BD ·PC =3-3=0,∴BD ⊥PC . (2)由题意知,AB =(0,3,0),DP =(0,0,a ),PA =(1,0,-a ),PC =(-3,3,-a ),∵PE =λPC ,∴PE =(-3λ,3λ,-aλ),DE =DP +PE =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧ AB ·n =0,PA ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1),∵DE ∥平面P AB ,∴DE ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB ⊥BC ,∴AB ·BC =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP =OA +t AB ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA ,n 1⊥AE , 即⎩⎪⎨⎪⎧ n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1. 令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为1FC ·n 1=-2+2=0,所以1FC ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC ,n 2⊥11C B , 即⎩⎪⎨⎪⎧ n 2·1FC =2y 2+z 2=0,n 2·11C B =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD =a ,AB =b ,AC =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD |2=|CA +AB +BD |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD |=217. 答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CD CC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 解:(1)证明:设CD =a ,CB =b ,1CC =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,BD =CD -CB =a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b =12|c ||a |-12|c ||b |=0,∴1C C ⊥BD ,即C 1C ⊥BD . (2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA =a +b +c ,1C D =a -c .∴1CA ·1C D =0,即(a +b +c )·(a -c )=0. 整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |. 即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD . 3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB =(2,0,-2),FE =(0,-1,0),FG =(1,1,-1),设PB =s FE +t FG ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB =2FE +2FG ,又∵FE 与FG 不共线,∴PB 、FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。
空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。
第5讲 空间向量及其运算一、知识梳理1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b互相垂直,记作a ⊥b .(2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算 (1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0n·b =0. 5.空间位置关系的向量表示1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间任意一点.二、教材衍化1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则BM →=________(用a ,b ,c 表示).解析:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .答案:-12a +12b +c2.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 解析:|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,所以|EF →|=2,所以EF 的长为 2. 答案: 23.在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设DA =2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),AM →·ON →=-2+0+2=0,所以AM ⊥ON .答案:垂直一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( ) (6)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√二、易错纠偏复习指导| (1)忽视向量共线与共面的区别; (2)使用数量积公式出错.1.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直解析:选B .由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), 所以AB →=-3CD →,所以AB →与CD →共线, 又AB 与CD 没有公共点,所以AB ∥CD .2.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+t OC →,若P ,A ,B ,C 四点共面,则实数t =________.解析:因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18.答案:18考点一 空间向量的线性运算(基础型)复习指导| 了解空间向量的概念,掌握空间向量的线性运算及其坐标表示. 核心素养:数学运算、数学抽象1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是 ( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +c解析:选A .由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .2.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B .因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →).所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →)=12[(3,-5,-2)+(-7,-1,-4)]=12(-4,-6,-6)=(-2,-3,-3). 3.在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →.解:(1)MG →=MA →+AG → =12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.(2)OG →=OM →+MG → =12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →.用已知向量表示未知向量的解题策略(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.考点二 共线、共面向量定理的应用(基础型)复习指导| 了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.核心素养:数学运算如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 【解】 (1)因为AM →=kAC 1→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,所以由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,所以MN ∥平面ABB 1A 1.三点P ,A ,B 共线空间四点M ,P ,A ,B 共面 P A →=λPB →MP →=xMA →+yMB →对空间任一点O ,=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →1.若A (-1,2,3),B (2,1,4),C (m ,n ,1)三点共线,则m +n =________. 解析:AB →=(3,-1,1),AC →=(m +1,n -2,-2). 因为A ,B ,C 三点共线,所以存在实数λ, 使得AC →=λAB →.即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ), 所以⎩⎪⎨⎪⎧m +1=3λn -2=-λ-2=λ,解得λ=-2,m =-7,n =4.所以m +n =-3. 答案:-32.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →;(2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b ,AA 1→=c . 由题图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12AB →=12a +b +c=12AB →+AD →+AA 1→. (2)证明:由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →,因为EG 与AC 无公共点,所以EG ∥AC ,因为EG ⊄平面AB 1C ,AC ⊂平面AB 1C , 所以EG ∥平面AB 1C . 又因为AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,因为FG 与AB 1无公共点,所以FG ∥AB 1,因为FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , 所以FG ∥平面AB 1C ,又因为FG ∩EG =G ,FG ,EG ⊂平面EFG , 所以平面EFG ∥平面AB 1C .考点三 空间向量数量积的应用(基础型)复习指导| 掌握空间向量的数量积及其坐标表示. 核心素养:数学运算如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD →.【解】 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,(1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a ·c =14.(2)EG →·BD →=(EA →+AD →+DG →)·(AD →-AB →) =⎝⎛⎭⎫-12AB →+AD →+AG →-AD →·(AD →-AB →) =⎝⎛⎭⎫-12AB →+12AC →+12AD →·(AD →-AB →) =⎝⎛⎭⎫-12a +12b +12c ·(c -a )=12(-1×1×12+1×1×12+1+1-1×1×12-1×1×12) =12. 【迁移探究1】 (变问法)在本例条件下,求证EG ⊥AB . 证明:由例题知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝⎛⎭⎫1×1×12+1×1×12-1=0. 故EG →⊥AB →,即EG ⊥AB .【迁移探究2】 (变问法)在本例条件下,求EG 的长. 解:由例题知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.【迁移探究3】 (变问法)在本例条件下,求异面直线AG 与CE 所成角的余弦值. 解:由例题知AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0π2.所以异面直线AG 与CE 所成角的余弦值为23.空间向量数量积的三个应用求夹角 设向量a ,b 所成的角为θ,则cos θ=a ·b|a ||b |,进而可求两异面直线所成的角求长度(距离) 运用公式|a |2=a ·a ,可使线段长度的计算问题转化为向量数量积的计算问题 解决垂直问题利用a ⊥b ⇔a ·b =0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N=2B 1N .设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长. 解:(1)由题图知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c -a )+a +13(b -a )=13a +13b +13c . (2)由题设条件知,因为(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,所以|a +b +c |=5,|MN →|=13|a +b +c |=53.考点四 利用向量证明平行与垂直(应用型)复习指导| 1.理解直线的方向向量与平面的法向量. 2.能用向量语言表述线线、线面、面面的垂直、平行关系.3.能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理). 核心素养:逻辑推理 角度一 证明平行问题(一题多解)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB ∥平面EFG ; (2)平面EFG ∥平面PBC .【证明】 (1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一:EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF →=0n ·EG →=0即⎩⎪⎨⎪⎧y =0x +2y -z =0令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2), 所以PB →·n =0,所以n ⊥PB →,因为PB ⊄平面EFG ,所以PB ∥平面EFG .法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以⎩⎪⎨⎪⎧t =2t -s =0-t =-2解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线, 所以PB →,FE →与FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG . (2)因为EF →=(0,1,0),BC →=(0,2,0), 所以BC →=2EF →, 所以BC ∥EF .又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC , 同理可证GF ∥PC , 从而得出GF ∥平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , 所以平面EFG ∥平面PBC . 角度二 证明垂直问题如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【证明】 (1)如图所示,以O 为坐标原点,以射线DB 方向为x 轴正方向,射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是AP→=(0,3,4),BC→=(-8,0,0),所以AP→·BC→=(0,3,4)·(-8,0,0)=0,所以AP→⊥BC→,即AP⊥BC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,所以AM→=35AP→=⎝⎛⎭⎪⎪⎫095125,又BA→=(-4,-5,0),所以BM→=BA→+AM→=⎝⎛⎭⎪⎪⎫-4-165125,则AP→·BM→=(0,3,4)·⎝⎛⎭⎪⎪⎫-4-165125=0,所以AP→⊥BM→,即AP⊥BM,又根据(1)的结论知AP⊥BC,所以AP⊥平面BMC,于是AM⊥平面BMC.又AM⊂平面AMC,故平面AMC⊥平面BMC.(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系;④根据运算结果解释相关问题.(2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4. ⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证: AC 1⊥BD .解:(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,所以a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, 所以|AC 1→|=6,即AC 1的长为 6. (2)证明:因为AC 1→=a +b +c ,BD →=b -a , 所以AC 1→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c=|b ||c |cos 60°-|a ||c |cos 60°=0.所以AC 1→⊥BD →,所以AC 1⊥BD .[基础题组练]1.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B .由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),所以⎩⎪⎨⎪⎧2x -y =7x +2y =6-3x +3y =λ解得λ=-9.2.(多选)有下列四个命题,其中不正确的命题有( ) A .已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0 B .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →C .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则P ,A ,B ,C 四点共面解析:选ACD .对于A,已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0,错误;对于B,若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →,正确;对于C,分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量,不正确;对于D,对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),仅当x +y +z =1时,P ,A ,B ,C 四点共面,故错误.3.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定解析:选B .如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.4.如图,在大小为45°的二面角A EF D 中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A . 3B . 2C .1D .3- 2解析:选D .因为BD →=BF →+FE →+ED →,所以|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,所以|BD →|=3- 2.5.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( ) A .±66 B .66C .-66D .± 6解析:选C .OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.解析:因为OC →=12AC →=12(AB →+AD →),所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.答案:12AB →+12AD →+AA 1→7.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是CD ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,则MN =________.解析:连接PD ,因为M ,N 分别为CD ,PC 的中点,所以MN =12PD ,又P (0,0,1),D (0,1,0),所以PD =02+(-1)2+12=2, 所以MN =22. 答案:228.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:09.如图所示,在直三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C 和平面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C ;证明:由题意知,AA 1,AB ,AC 两两垂直,则以A 为坐标原点,建立如图所示的空间直角坐标系.设AA 1=2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1). (1)因为AA 1⊥A 1B 1,AA 1⊥A 1C 1, 且A 1B 1∩A 1C 1=A 1, 所以AA 1⊥平面A 1B 1C 1. 因为MN →=(0,1,1),AA 1→=(2,0,0), 所以MN →·AA 1→=0,即MN ⊥AA 1. 因为MN ⊄平面A 1B 1C 1, 故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0n 1·MC →1=0⇒⎩⎪⎨⎪⎧x 1-2y 1=0x 1+2z 1=0令x 1=2,则n 1=(2,1,-1).同理可得n 2=(0,1,1). 因为n 1·n 2=2×0+1×1+(-1)×1=0, 所以平面MBC 1⊥平面BB 1C 1C .10.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.求证:(1)EF ∥平面P AB ; (2)平面P AD ⊥平面PDC .证明:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E⎝⎛⎭⎪⎪⎫12112,F⎝⎛⎭⎪⎫0112,EF→=⎝⎛⎭⎪⎫-12,PB→=(1,0,-1),PD→=(0,2,-1),AP→=(0,0,1),AD→=(0,2,0),DC→=(1,0,0),AB→=(1,0,0).(1)因为EF→=-12AB→,所以EF→∥AB→,即EF∥AB.又AB⊂平面P AB,EF⊂/ 平面P AB,所以EF∥平面P AB.(2)因为AP→·DC→=(0,0,1)·(1,0,0)=0,所以AP→⊥DC→,AD→⊥DC→,即AP⊥DC,AD⊥DC.又AP∩AD=A,所以DC⊥平面P AD.所以平面P AD⊥平面PDC.[综合题组练]1.已知空间任意一点O和不共线的三点A,B,C,若OP→=xOA→+yOB→+zOC→(x,y,z∈R),则“x =2,y=-3,z=2”是“P,A,B,C四点共面”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B.当x=2,y=-3,z=2时,即OP→=2OA→-3OB→+2OC→.则AP→-AO→=2OA→-3(AB→-AO→)+2(AC→-AO→),即AP→=-3AB→+2AC→,根据共面向量定理知,P,A,B,C四点共面;反之,当P,A,B,C四点共面时,根据共面向量定理,设AP→=mAB→+nAC→(m,n∈R),即OP→-OA→=m(OB→-OA→)+n(OC→-OA→),即OP→=(1-m-n)OA→+mOB→+nOC→,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C四点共面”的充分不必要条件.2.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=2,AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为()A.(1,1,1)B .⎝ ⎛⎭⎪⎫23231C .⎝ ⎛⎭⎪⎫22221D .⎝ ⎛⎭⎪⎫24241解析:选C .设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝ ⎛⎭⎪⎫22220,又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎫-22-221,AM →=(x -2,y -2,1),因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22y -2=-22⇒⎩⎪⎨⎪⎧x =22y =22 所以M 点的坐标为⎝ ⎛⎭⎪⎫22221.3.在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A⎝ ⎛⎭⎪⎪⎫0320,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫1200,C 1⎝ ⎛⎭⎪⎫1202,M (0,0,0),设N ⎝ ⎛⎭⎪⎫120t ,因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎪⎫1221+λ, 所以AB 1→=⎝ ⎛⎭⎪⎫-12-322,MN →=⎝ ⎛⎭⎪⎪⎫12021+λ. 又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:154.如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA →=a ,DB →=b ,DC →=c .(1)以{a,b,c}为基底表示FE→,则FE→=______;(2)若∠ADB=∠BDC=∠ADC=60°,且|DA→|=4,|DB→|=3,|DC→|=3,则|FE→|=______.解析:(1)如图所示,连接DE.因为FE→=FD→+DE→,FD→=-DF→=-13DC→,DE→=12(DA→+DB→),所以FE→=-13c+12a+12b.(2)|FE→|2=⎝⎛⎭⎫12a+12b-13c2=14a2+14b2+19c2+12a·b-13a·c-13b·c=14×42+14×32+19×32+12×4×3×12-13×4×3×12-13×3×3×12=274.所以|FE→|=332.答案:-13c+12a+12b3325.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面P AD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.解: (1)证明:由题意知,DA,DC,DP两两垂直.如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E⎝⎛⎭⎪⎫aa2,P(0,0,a),F⎝⎛⎭⎪⎪⎫a2a2a2.EF→=⎝⎛⎭⎪⎪⎫-a2a2,DC→=(0,a,0).因为EF→·DC→=0,所以EF→⊥DC→,从而得EF⊥CD.(2)存在.理由如下:假设存在满足条件的点G,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2, 若使GF ⊥平面PCB ,则由 FG →·CB →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2·(0,-a ,a )=a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. 所以G 点坐标为⎝ ⎛⎭⎪⎫a 200, 故存在满足条件的点G ,且点G 为AD 的中点.6.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.解:(1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, 所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1→,即BD ⊥AA 1.(2)存在.理由如下:假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设平面DA 1C 1的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ⊥A 1C 1→n ⊥DA 1→ 又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎪⎨⎪⎧2y 2=03x 2+3z 2=0 取n =(1,0,-1),因为BP ∥平面DA 1C 1,则n ⊥BP →,即n ·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .。