扬州市江都区第二中学2013年七年级(下)期末数学试题(含答案)
- 格式:doc
- 大小:224.50 KB
- 文档页数:8
扬州市七年级数学下册期末测试卷及答案一、选择题1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm 3.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--4.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x -=+⎧⎨-=+⎩ B .449x y y x y x-=+⎧⎨-=-⎩ C .449x y y x y x -=-⎧⎨-=+⎩ D .449x y y x y x -=-⎧⎨-=-⎩ 5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0 B .1 C .3 D .77.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 8.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3 B .2,3,6 C .3,4,5 D .4,5,99.计算28+(-2)8所得的结果是( ) A .0 B .216 C .48 D .2910.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6二、填空题11.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.12.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.13.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.14.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.15.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).16.分解因式:x 2﹣4x=__.17.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 218.若等式0(2)1x -=成立,则x 的取值范围是_________. 19.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.20.计算:2m·3m=______.三、解答题21.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).22.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量23.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 24.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.25.解下列二元一次方程组:(1)70231x y xy +=⎧⎨-=-⎩①②; (2)239345x y x y -=⎧⎨+=⎩①②. 26.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.27.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.28.某口罩加工厂有,A B两组工人共150人,A组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B两组工人每小时一共可加工口罩9300只.、两组工人各有多少人?(1)求A B、两组工人均提高了工作效率,一名A组工人和一名B组工人每(2)由于疫情加重,A B、两组工人每小时至少加工15000只口罩,那么A组工人小时共可生产口罩200只,若A B每人每小时至少加工多少只口罩?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.2.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.3.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x8x22(2x1)-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4.D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.A解析:A【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.7.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.8.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.9.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.10.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.二、填空题11.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.12.20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,解析:20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S 矩形DEB'F =DE•DF =4×5=20cm 2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.13.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作 解析:40392 【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n = ,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM , ∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= ,故答案为:40392. 【点睛】 此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键.14.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.15.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).16.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).17.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.18.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.19.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.(1)2;(2)7a 4+4a 6+a 2;(3)15x+19;(4)4x 2+4xy+y 2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可; (4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a 4﹣2a 4+4a 6+a 2,=7a 4+4a 6+a 2;(3)原式=x 2+10x+25﹣(x 2﹣3x ﹣2x+6),=x 2+10x+25﹣x 2+3x+2x ﹣6,=15x+19;(4)原式=(2x+y )2﹣4,=4x 2+4xy+y 2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.22.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.23.(1)7;(2)55a.【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2;=4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.24.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键25.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.26.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.27.见解析【分析】由DF∥AC,得到∠BFD=∠A,再结合∠BFD=∠CED,有等量代换得到∠A=∠CED,从而可得DE∥AB,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF∥AC,∴∠BFD=∠A.∵∠BFD=∠CED,∴∠A=∠CED.∴DE∥AB,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.28.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.。
2012-2013学年第二学期扬州市江都区中学七年级数学期末试卷2013.61.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一.用心选一选(每题3分,共24分) 1.下列计算中,正确的是 ( ▲ )A .2223a a a +=B .824a a a ÷=C .326a a a ⋅= D .326()a a =2.如图,不一定能推出b a //的条件是: ( ▲ )A .31∠=∠B .42∠=∠C .41∠=∠D . 18032=∠+∠3.如图,射线OC 的端点O 在直线AB 上,设1∠的度数为x ,2∠的度数为y ,且x 比y的2倍多 10,则列出的方程组正确的是: ( ▲ ) A .⎩⎨⎧+==+10180y x y x B .⎩⎨⎧+==+102180y x y x C .⎩⎨⎧-==+y x y x 210180 D .⎩⎨⎧-==+10290x y y x4.下列各式从左到右的变形,属因式分解的是 ( ▲ )A. 2(3)(2)56x x x x ++=++ B. 4x x x x x 6)32)(32(692+-+=+-C. 221025(5)x x x ++=+ D. b a b a 521022⋅=5.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=( ▲ )A .115°B .105°C .130°D .120°(第2题图) (第3题图)1AED CBF(第5题图)(第6题图)6.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点 G , 若∠EFG =72°,则∠EGF 的度数为( ▲ ) A .36° B .54° C .72° D .108° 7.下列命题为真命题的是 ( ▲ )A.内错角相等B.点到直线的距离就是点到直线的垂线段C. 在同一平面内,垂直于同一直线的两条直线平行D. 如果∠A +∠B +∠C =180°,那么∠A 、∠B 、∠C 互补8.现有一段旧围墙长20米,李叔叔想紧靠这段围墙圈一块长方形空地作为兔舍饲养 小兔. 已知他圈好的空地如图所示,是一个长方形,它的一条边用墙代替,另三边 用总长度为50米的篱笆围成,设垂直于墙的一边的长度为a 米,则a 的取值范围是( ▲ )A.20<a <50 B . 15≤a <25 C .20≤a <25 D . 15≤a ≤20二.细心填一填:(每题3分,共30分) 9.计算:()42a a b --= ▲ .10. 水滴穿石,水珠不断滴在一块石头上,经过若干年,石头上形成了一个深为0.0000075m的小洞,则数字0.0000075用科学记数法可表示为 ▲ . 11. 命题“直角三角形的两个锐角互余”的逆命题是: ▲ . 12.用完全平方公式计算 22()4x m x x n -=-+,则m +n 的值为 ▲ .13.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是___▲__.14.一个三角形的三边长分别是3、a 、6,则a 的取值范围是 ▲ . 15. 已知多边形的内角和比它的外角和大540°,则多边形的边数为 ▲ . 16. 已知x +3y -3=0,则3x ·27y = ▲ . 17.若不等式组24x x a <⎧⎨<+⎩的解集是2x <,则a 的取值范围是 ▲ .18.用锤子以相同的力将钢钉垂直钉入墙内,随着钢钉的深入,a(第8题图)钢钉所受的阻力也越来越大.当未进入墙面的钉子长度足够时, 每次钉入墙内的钉子长度是前一次的13.已知这个钢钉被敲击3 次后全部进入墙内(墙足够厚),且第一次敲击后钢钉进入墙内 的长度是2.7cm ,若设钢钉总长度为a cm ,则a 的取值范围是 ▲ .三.耐心做一做(本大题共10题,计96分)19.(本题8分) 计算:(1) 021(2013)()43π---+- (2) 2332()(2)x y xy ⋅-20.(本题8分) 将下列各式分解因式:(1)3182m m - (2)22216)4(x x -+21.(本题10分) 解方程组或不等式组:(1)20325x y x y -=⎧⎨-=⎩ (2)⎪⎩⎪⎨⎧+≤->-42214215x x x x ,并把它的解集在数轴上表示出来第18题图22.(本题8分) 已知 17)(2=+b a , 13)(2=-b a , 求22b a +与ab 的值.23.(本题满分8分)画图并填空:(1)画出△ABC 先向右平移6格,再向 下平移2格得到的△A 1B 1C 1. (2) 线段AA 1与线段BB 1的关系是: ▲ . (3)△ABC 的面积是 ▲ 平方单位.24.(本题10分) 已知关于x y 、的方程组224x y x y a +=⎧⎨-=-⎩(1) 求这个方程组的解;(2) 当a 取什么整数时,这个方程组的解中x 为正数,y 为非负数. jCBA25. (本题10分)天灾无情人有情. 2013年4月20日, 四川省雅安市发生7.0级地震,为奉献自己的一份爱心,我区某中学以班级为单位积极为灾区捐款.下面是七(1) 、七(2)两班班长的对话,七(1)班班长:“我们两班的捐款总数目相同,计算得我班平均每人捐款25元.”七(2)班班长:“你们班捐款的人数比我们班多8人,但我们班的人均捐款数却比你们多20%.”请根据他们两人的对话,求出七(1) 、七(2)两班的捐款人数分别是多少?26.(本题10分)为了更好地保护环境,治理水质,我区某治污公司决定购买12台污水处理设备,现有A、B两种型号设备,A型每台m万元;B型每台n万元,经调查买一台A 型设备比买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少5万元.(1)求m、n的值 .(2)经预算,该治污公司购买污水处理器的资金不超过148万元. 该公司A型设备最多能买几台?27.(本题12分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.在图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐▲ ;连接FC,∠FCE的度数逐渐▲ .(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?若能,求出∠CFE的度数;若不能,请说明理由.28.(本题12分)我们知道:平行四边形的面积 =(底边)× (这条底边上的高). 如下图,四边形ABCD 都是平行四边形, AD ∥BC , AB ∥CD , 设它的面积为......S . (1) 如图①, 点M 为AD 上任意一点,则△BCM 的面积S 1= ▲ S , △BCD 的面积S 2与△BCM 的面积S 1的数量关系是 ▲ .(2) 如图②,设AC 、BD 交于点O , 则O 为AC 、BD 的中点,试探究△AOB 的面积与 △COD 的面积之和S 3与平行四边形的面积S 的数量关系.(3) 如图③,点P 为平行四边形ABCD 内任意一点时, 记△PAB 的面积为S ˊ, △PCD 的面积为S 〞,平行四边形ABCD 的面积为S , 猜想得S ˊ、 S 〞的和与S 的数量关系式为 ▲ .(4)如图④, 已知点P 为平行四边形ABCD 内任意一点, △PAB 的面积为3, △PBC 的面积为7, 求△PBD 的面积.MADCB图①A DCBP 图③ADCBP图④ 图②ADCBo参考答案一.用心选一选(每题3分,共24分)二.细心填一填:(每题3分,共30分)9.248a ab -+ 10.67.510-⨯ 11. 两锐角互余的三角形是直角三角形 12. 6 13.2k > 14.39a << 15. 7 16. 27 17.2a -≥ 18. 3.6 3.9a <≤ 三.耐心做一做(共96分)19.解:(1)原式=194-+ ………………… 3分 =4- ……………… 4分(2)原式= 6326x 4y x y ⋅ ………………… 3分=894x y ……………… 4分 20.(1)解:原式= 22(91)m m - ……………2分 =2(31)(31)m m m +- ………………4分 (2)解:原式= ()()224444x x xx +++- …………2分=()()2222x x +- …………4分21.(1)510x y =-⎧⎨=-⎩;……5分(2)1-<x ≤2;……3分,在数轴上表示解集(略)……5分22.解:22a b +=22()()17131522a b a b ++-+== ……4分 ab =22()()1713144a b a b +---==…………8分 题号 1 2 3 4 5 6 7 8 答案DCBCABCB23.(1) 图略 ……3分(2)平行且相等 ……5分 (3) 3.5 ……8分24.(1)13x a y a =-⎧⎨=-⎩……5分(2)13a <≤ ……8分 因为a 为整数,所以23a =或 ……10分 25.解:设七(1)班有x 人捐款,七(2)班有y 人捐款,根据题意,得82525(120%)x y x y -=⎧⎨=⨯+⎩ ………………4分解得,4840x y =⎧⎨=⎩………………8分答:七(1)班有48人捐款,七(2)班有40人捐款 …10分26.解:(1)解:根据题意,得;3235m n m n -=⎧⎨=-⎩ 解这个方程组,得1411m n =⎧⎨=⎩答:略 ……4分 (2)解:设A 型设备买x 台.根据题意,得1411(12)14x x +-≤ 解这个不等式,得 153x ≤答:该公司A 型设备最多买5台. ……8分27.解:(1) 变小 ; 变大 .…………4分(2)∠FCE 与∠CFE 度数之和为定值,等于45°…………5分理由: 在移动过程中,总有∠DEF 是△CEF 的外角,∴ FCE CFE ∠+∠F DE =∠904545=︒-︒=︒(定值) …………8分(3)能将△DEF 移动至某位置,使F 、C 的连线与AB 平行 理由: 设CF ∥AB ,则FCE A=30∠=∠︒, …………9分由(2)中结论,得CFE=DEF-ECF ∠∠∠所以,CFE=45-3015∠︒︒=︒ …………12分28. (1)S 1=12S , 12S S =(或相等) …………4分 (2)S 3=12S 理由:因为O 为AC 、BD 的中点,所以,3AOB COD ABD BCD ABD BCD 1111S S S S S (S S )S 2222=+=+=+=V V V V V V…………7分(3)数量关系:12+=S S S ˊ〞 …………9分 (4)PAB PCD BCD 1S S S 2S +==V V V PAB S 3=V ,PBC S 7=V ,则PBD BCD PBC PCD BCD S S S S S S PBCD =V V V V V 四边形- = + -PBD 11S 7(3)73422S S =+--=-=V …………12分(注:此答案仅作为参考) ADCBP图④。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2012-2013学年第二学期扬州市江都区仙城中学七年级数学期末试卷(考试时间:120分钟,满分150分) 2013.6一、选择题(本题有8小题,每小题3分,共24分)1.下列运算中,结果正确的是A.3412a a a ⋅=B.1025a a a ÷=C. 4a a 3a -=D. 235a a a += 2.不等式52x +<的解在数轴上表示为A . B. C. D.3.若0002011.0用科学记数法表示为n10011.2⨯,则n 的值为 A .-3B .-4C .-5D .-64.下列选项中,可以用来证明命题“21,1a a >>若则”是假命题的反例是 A. 2a =- B. 1a =- C. 1a = D. 2a =5.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是A .450B .550C .650D .7506.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y 分钟,列出的方程是A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩ B .158********x y x y +=+=⎧⎨⎩5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2013苏科版七年级上册数学期末试卷(带答案)扬州市江都区中学2012—2013年度第一学期七年级数学期末试卷(满分:150分测试时间:120分钟)一、精心选选,走向成功.(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内)题号12345678答案1.下列算式中,运算结果为负数的是(▲)A.B.︱-2︳C.-(-2)D.2.已知水星的半径约为24400000米,用科学记数法表示为(▲)米A.B.C.D.3.如图1是一个几何体表面展开图(字在外表面上),面“江”的对面所写的字是(▲)A.我B.爱C.春D.都4.下列各式中,计算正确的是(▲)A.B.C.D.2x+3y=5xy5.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是(▲)A.圆柱B.圆C.圆锥D.三角形6.对于下列说法,正确的是(▲)A.过一点有且只有一条直线与已知直线平行;B.过一点有且只有一条直线与已知直线垂直;C.测量孙浩的跳远成绩,正确做法的依据是“两点之间,线段最短”;D.不相交的两条直线叫做平行线.7.如图(2),数轴上两点分别对应实数,则下列结论正确的是(▲)A.B.C.D.8.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是103,则m的值是(▲)A.9B.10C.11D.12二、细心填填,事半功倍.(每题3分,计30分)9.已知一个锐角为55°,则这个锐角的补角是°.10.若单项式与和仍是单项式,则的值是.11.无限不循环小数叫无理数,请你写出一个负无理数.12.若同一平面内三条直线满足,,则直线、的位置关系是.13.,则为.14.如果代数式,那么代数式的值是.15.下图表示1张餐桌和6张椅子(每个小半圆代表1张椅子,一人一椅),若按这种方式摆放30张餐桌可供人同时坐下就餐.16.如图是一个简单的数值运算程序,当输入的值为3时,则输出的结果为.17.将一张长方形纸片按如图(3)所示的方式折叠,BD、BE为折痕,并使在同一直线上,若∠ABE=15°则∠DBC为度.18.在庆元旦活动中,甲、乙、丙、丁四名同学围成一圈依序报数,规定:①甲、乙、丙、丁首次报的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2013时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在这个活动中,甲同学需要拍手的次数为.三、尽心解解,马到成功.(本大题共10题,满分96分)19.计算(本题满分10分)(1)(2)20.解下列方程(本题满分10分)(1)(2)21.(本题满分8分)(1)化简后再求值:,其中、、满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因。
江苏省扬州市江都区第二中学2012—2013学年七年级下学期期末考试数学试卷1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一.用心选一选(每题3分,共24分)1.下面式子正确的是 ( )A.623x x x =⋅B.1055x x x =+C.236x x x =÷D.933)(x x =2.纳米是一种长度单位,1纳米= 109-米.已知某种植物的花粉的直径约为45000纳米,那么用科学记数法表示该种花粉的直径为 ( )A.4105.4⨯B.5105.4-⨯C.4105.4-⨯D.9105.4-⨯3.下列算式能用平方差公式计算的是 ( )A.)2)(2(a b b a -+B.)121)(121(--+x x C.))((n m n m +--- D.)3)(3(y x y x +--4.不等式26x -≤0的自然数解的个数为 ( )A .1个B .2个C .3个D .4个5.若224x Mxy y -+是一个完全平方式,那么M 的值是( )A. 2B. ±2C. 4D.±46.已知关于x 的不等式(1-a)x >2的解集是x <21a -,则a 的取值范围( ) A.a >0 B.a >1 C.a <0 D.a <17.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是 ( ) A. m ≤2B. m ≥2C.m ≤1D. m >18.如图:PC 、PB 是∠ACB 、∠ABC 的平线,∠A=40º,∠BPC=( )A.∠BPC=70ºB.∠BPC=140ºC.∠BPC=110ºD.∠BPC=40º二.细心填一填:(每题3分,共30分)9.若,21,3==n m a a 则=-n m a 32 。
七年级数学2014.6(试卷满分:150分 考试时间:120分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置.......上) 1.如图,若m ∥n ,∠1=115°,则∠2=( ) A . 55° B .60° C . 65° D . 70°2.下列运算正确的是( )A .3a ﹒25a a = B .()325aa =C .336a a a +=D . ()222a b a b +=+3.下列方程是二元一次方程的是 ( )A .23x y z +=-B .5xy =C .153y x+= D . x y = 4.下面有3个命题:①同旁内角互补;②两直线平行,内错角相等;③在同一平面内,垂直于同一条直线的两直线互相平行.其中真命题为 ( )A .①B .②C .③D .②③5.不等式组1(1)22331x x x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是( )6.一个凸 n 边形,其内角和为1800,则n 的值为( )A .14B .13C .12D .157.已知 a 、b 为常数,若 ax + b >0的解集为 x <15,则 bx -a <0的解集是( )A .x >-5B .x <-5C . x >5D . x <58.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,1i =表示从1开始求和;上面的小字,如n 表示求和到...n 为止... 即1231nin i xx x x x ==++++∑…。
则()211ni i =-∑表示 ( )A .n 2-1B .12+22+32+…+2i - iC .12+22+32+…+n 2-nD .12+22+32+…+n 2-(1+2+3+…+ n)A B C D第1题图二、填空题(本大题共有10小题,每小题3分,共30分。
1七年级数学试卷(满分:150分;考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效一、选择题(每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内,每题3分,计24分) 1.计算23()x ,正确的结果是4Ax5Bx6Cx8Dx2.长度为下列各组数据的线段中,能组成三角形的是2,3,5A 3,4,5B 2,6,9C3,3,7D3.已知方程组 ,则y x -的值是112A B aC D a -4.若2,4m n a a ==,则m na-等于5.计算9910022)()(-+-所得的结果是 99992222A B CD--6.下列事件是必然事件的是A 明天会下雨B 任意选一个学生,他的学号是奇数C 在共装有5个红球3个黄球的袋子中摸不到蓝球D 下课后,同学们都去操场7.如图(1),AD AE =,补充下列一个条件后,仍不能判定ABE ∆≌ACD ∆的是A B CB AB ACC BE CD D AEB ADC∠=∠==∠=∠8.如图(2),连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2011次操作后右下角的小正方形面积是201120112011111112011244ABCD⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、填空题(将答案填写在答题卡相应的横线上,每题4分,计40分). 9.分解因式:236a a -= ▲ .10.流感病毒的直径为0.000000008m ,用科学记数法表示为 ▲ m .BDEA(1)(2)18622AB C D-22122x y a x y a+=+⎧⎨+=⎩211.如果16-2+mx x 是一个完全平方式,那么m 的值为 ▲ . 12.若5a b -=,24ab =,则=+22b a ▲ .13.如图(3),65,75A B ∠=︒∠=︒,将纸片的一角折叠使点C 落在ABC ∆外. 若220∠=︒,则1∠= ▲ 度.14.如图(4),在ABC ∆中,90A ∠=︒,BD 是角平分线,DE BC ⊥,垂足是E , 10,6AC cm CD cm ==,则DE 的长为 ▲ .15.如图(5),在ABC ∆和ADE ∆中,有以下四个论断:① AB AD =,② AC AE =,③ C E ∠=∠,④ BC DE =.请以其中三个论断为条件,余下一个论断为结论,写出一个正确的结论(用序号“ ”的形式写出): ▲ . 16.关于,x y 的方程22(3)3b a axb y -+++=是二元一次方程,则b a = ▲ .17.小明只带2元和5元面值的人民币若干张,他要买一件29元的商品,若商店没有零钱找,那他付款时这两种面值的人民币共有 ▲ 种不同的组合方式. 18.在日常生活中,取款、上网等都需要密码.有一种“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是22()()()x y x y x y -++,若取9x =, 9y =时,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是,就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10,10x y ==,时,用上述方法产生的密码是: ▲(写出一个可).三、解答题(本大题共9题,满分86分) 19.(本题满分8分,每小题4分)计算或化简:(1)02311222-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(2)(31)(23)(3)(3)x x x x -+-+-20.(本题满分10分,每小题5分)解方程组:26(1)22x y x y -=⎧⎨+=-⎩ 6(2)34344x y x y ⎧+=⎪⎨⎪-=⎩ 21.(本题满分8分)某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如B A DC E(4) (3)(5)3图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图;(4)根据统计图,请写出两个信息.22. (本题满分8分)已知:如图,点,,,A B C D 在同一直线上,,,,AC DB AE BF E F ==∠∠都为直角, 试说明:DE ∥CF . 23.(本题满分10分)甲工人接到加工120个零件的任务,工作了1小时后,因任务要提前完成,调来乙工人与甲合作了3小时完成,已知乙每小时比甲多做5个,求甲、乙每小时各做多少个? 24、(本题满分10分)一圆盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字,转盘上有指针,转动转盘,当转盘停止,指针指向的数字即为转出的数字,现有两人参与游戏,一人转动转盘另一人猜数,若猜的数与转盘转出的数相符,则猜数的获胜,否则转动转盘的人获胜,猜数的方法从下面三种中选一种: (1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”; (3)猜“是大于4的数”或“是不大于4的数”.若你是猜数的游戏者,为了尽可能获胜,应选第几种猜数方法?并请你用数学知识说明理由. 25.(本题满分10分)先阅读下列一段文字,然后解答问题:某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a 元;为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b 元超重费.设某件物品的重量为x 千克.(1)当16≤x 时,支付费用为 ▲ 元(用含a 的代数式表示);当16x >时,支付费用为 ▲ 元(用含x 和a 、b 的代数式表示). (2)甲、乙两人各托运一件物品,物品重量和支付费用如下表所示第21题图AFE D C B第22题图4①试根据以上提供的信息确定a ,b 的值; ②试问在物品可拆分托运的情况下,用不超过120元的费用能否托运50千克物品?若能,请你设计出一种托运方案,并求出托运费用;若不能,请说明理由. 26.(本题满分10分)你能化简999897(1)(1)x x x x x -+++++吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手. 分别计算下列各式的值: ① 2(1)(1)1x x x -+=-; ② 23(1)(1)1x x x x -++=-; ③ 324(1)(1)1x x x x x -+++=-;……由此我们可以得到:999897(1)(1)x x x x x -+++++=__▲___;请你利用上面的结论,完成下面两题的计算: (1)99989722221+++++;(2)504948(2)(2)(2)(2)1-+-+-++-+.27.(本题满分12分)如图1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)如图1,请你写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图2的位置时,EP 交AC 于点O ,连结AP ,BO .猜想并写出BO 与AP 所满足的数量关系和位置关系,并说明理由;(3)将EFP △沿直线l 继续向左平移到图3的位置时,EP 的延长线交AC 的延长线于点O ,连结AP ,BO .此时,BO 与AP 还具有(2)中的数量关系和位置关系吗?请说明理由.CBEF P OA l图3()C F l()A E 图1E F OA C l图25七年级数学答案(满分:150分;考试时间:120分钟)分,计24二、填空题(每题4分,计40分) 9.3(2)a a - 10.9810-⨯11.8,8- 12.73 13.100︒ 14.4cm 15.答案不唯一 16.1- 17.3 18.答案不唯一可以是410200 三、解答题19.(1)3 --------------4分 (2)5x 2+7x+6 --------------4分20.(1)22x y =⎧⎨=-⎩ -------------5分 (2)128x y =⎧⎨=⎩-------------5分21.(1)100名 -----------------------------------------2分 (2)36︒ --------------------------------------2分 (3)---------------------------2分(4)答案不唯一 -----------------------------------------2分 22.说明:∵AC BD =,∴AC CD BD CD +=+,即AD BC =, 在Rt AED ∆与Rt BFC ∆中, ∵AD BC =,AE BF =,∴Rt AED ∆≌Rt BFC ∆-----------------------------------------6分 ∴EDA FCB ∠=∠∴DE ∥CF -----------------------------------------2分23.解:设甲每小时加工x 个零件,乙每小时加工y 个零件, ------- --------2分根据题意得: 543120x yx y +=⎧⎨+=⎩--------------------------------4分解方程组得:1520x y =⎧⎨=⎩ --------------------------------------------------------------------------3分答:甲每小时加工个15零件,乙每小时加工20个零件. ---------------------1分624、解:选第2种猜数方法.-------------------------------------------------------------------------3分理由:P (是奇数)=0.5,P (是偶数)=0.5;-------------------------------2分P (是3的倍数)=0.3,P (不是3的倍数)=0.7;-------------------------2分 P (是大于4的数)=0.6,P (不是大于4的数)=0.4.------------------------2分 ∵P (不是3的倍数)最大,∴选第2种猜数方法,并猜转盘转得的结果不是3的倍数.---------1分25.(1)30a +, 30(16)a b x ++------------------------------------------------------2分(2) ①30(1816)3930(2516)60a b a b ++-=⎧⎨++-=⎩ ,解之得 33a b =⎧⎨=⎩ --------------5分② 能 ------------------------------------------------------------ --------------1分方案1:第一次托运16千克,第二次托运34千克,需付运费:303303(3416)3120++++-⨯=元 ---------- --------------2分 方案2:第一次托运16千克,第二次托运16千克,第三次托运18千克, 需付运费:303303303(1816)3105++++++-⨯=元 --- --------------2分 26.1001x- --------------------------------------------------------------------------2分 (1) 10021- --------------------------------------------------------------------------4分(2)511(21)3+ --------------------------------------------------------------------------4分 27.(1),AP BC AP BC =⊥. -------------------------------------------------------------------------2分 (2),AP BO AP BO =⊥ -------------------------------------------------------------------------2分 通过证明APC ∆≌OBC ∆,说明结论成立.----------------------------------------4分 (3)依然有,AP BO AP BO =⊥ ---------------------------------------------------------------------2分 通过证明APC ∆≌OBC ∆,说明结论成立.----------------------------------------2分。
江苏省扬州市江都区2012-2013学年七年级(下)期中数学试卷一、选择题(每题3分,共计24分)1.(3分)下列计算错误的是()2.(3分)如图,直线a∥b,∠1=40°,则∠2=()3.(3分)下列长度的三根木棒首尾相接,不能做成三角形的框架的是()4.(3分)下列现象是数学中的平移的是()5.(3分)下列各式能用平方差公式进行计算的是()6.(3分)(2010•东营)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()7.(3分)下列各式中与2nm﹣m2﹣n2相等的是()8.(3分)如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()=•b•=•a•a+b•b•=a ab b=[=[=[10二、填空题(每题3分,共计30分)9.(3分)(2012•德化县一模)计算:a2•a4=a6.10.(3分)在△ABC中,∠A=30°,∠C=90°,则∠B=60度.11.(3分)如果一个多边形的内角和是1440°,那么这个多边形是十边形.12.(3分)某种植物的细胞直径约为0.00012mm,用科学记数法表示这个数为 1.2×10﹣4mm.13.(3分)若x m+2n=16,x n=2,(x≠0),求x m+n=8.14.(3分)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为4.15.(3分)若a2+ma+36是一个完全平方式,则m=±12.16.(3分)(2013•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为 24.17.(3分)现定义运算a⊕b=ab,a⊗b=a(1﹣b),则m2⊗(m⊕n)=m2﹣m3n.18.(3分)如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是105°.三、解答题(共计96分)19.(24分)计算:(1)(2)(﹣2a)3﹣(﹣a)•(3a)2(3)(x+2)2﹣(x﹣1)(x﹣2)(4)(a+b)2(a﹣b)2(5)(a﹣3)(a+3)(a2+9)(6)(m﹣2n+3)(m+2n﹣3)20.(16分)分解因式:(1)9﹣x2(2)m2﹣10m+25(3)3a3﹣6a2+3a(4)x4﹣2x2+1.21.(8分)现有三个多项式①2m2+m﹣4,②2m2+9m+4,③2m2﹣m请你选择其中两个进行加(或减)法计算,并把结果因式分解.(1)我选择①②进行加法运算;(2)解答过程:22.(8分)化简求值:,其中.,(﹣a=a=×)23.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.﹣×××24.(10分)如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的高AD;(2)作△ABC的角平分线AE;(3)根据你所画的图形求∠DAE的度数.BAE=∠25.(10分)如图,在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.26.(12分)26.(1)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在下面的网格中,并标出字母a、b所表示的线段.的面积为(=a+ab+b ab+aba+ab+=ab++,直角三角形的面积为4=×h=;.。
扬州市邗江区2014—2015学年第二学期数学期期末试卷七年级数学(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共8题,每题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选择项前的字母代号填在下列表格内) 1.下列各式中,正确的是( )A .10552m m m = B. 844m m m = C. 933m m m = D.66m m +122m = 2.甲型流感病毒的直径大约为0.0000000081米,用科学记数法表示为( ) A .0.81×10-9米 B .0.81×10-8米 C .8.1×10-7米 D .8.1×10-9米3.把代数式269mx mx m -+分解因式,下列结果中正确的是( )A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 4.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( ) A .75° B .55° C .40° D .35°5.如果,下列各式中不一定正确.....的是( )A .B .C .D .6.如图所示,把一个三角形纸片ABC 的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .540°7.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( ) A .46282x y x y +=⎧⎨=+⎩ B .46282y x x y +=⎧⎨=+⎩ C .46282x y x y +=⎧⎨=-⎩ D .46282y x x y +=⎧⎨=-⎩8.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则A ∠与1∠和2∠ 之间有一种数量关系始终保持不变,你发现的规律是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠ 二、填空题(本大题共10题,每题3分,共30分.把答案填在题目中的横线上) 9.计算:32)(2x = .10.计算:=+22n)(m .11.因式分解:=+-22y x .12.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题: ①如果a//b ,a⊥c,那么b⊥c; ②如果b//a ,c//a ,那么b//c ; ③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b//c . 其中真命题的是 .(填写所有真命题的序号)13.已知:△ABC 的三个内角满足∠A=2∠B=3∠C ,则△ABC 是 三角形.(填“锐角”、“直角”、“钝角”)14.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是 度.15.由方程组63x m y m +=⎧⎨-=⎩,可得到x 与y 的关系式是__________。
第Ⅰ卷(选择题 共24分)一、选择题(本大题共8题,每题3分,共24分.每题地四个选项中,只有一个选项是符合要求地.)1、下列运算中,正确地是(▲)A 、844m m m =B 、25552m m m =C 、933m m m =D 、66y y 122y = 2、已知b a <,c 是有理数,下列各式中正确地是( ▲)A 、22bc ac <B 、b c a c -<-C 、c b c a 33-<-D 、c b c a < 3、若,)2()2(42222B y x A y x y x +-=++=+ 则A,B 各等于( ▲ )A 、xyxy 4,4 B 、xy xy 4,4- C 、xy xy 4,4- D 、xy xy 4,4-- 4、若方程组⎩⎨⎧-=++=+ay x a y x 13313地解满足y x +=0,则a 地取值是(▲)A 、a =-1B 、a =1C 、a =0D 、a 不能确定5、若一个三角形地3个内角度数之比为5:3:1,则与之对应地3个外角地度数之比为( ▲)A 、4:3:2B 、3:1:5C 、3:2:4D 、2:3:46、下列命题中,是真命题地是( ▲ )①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线地两条直线互相平行③三角形地三条高中,必有一条在三角形地内部 ④三角形地三个外角一定都是锐角A.、①② B 、②③ C 、①③ D 、③④8、如图,用四个螺丝将四条不可弯曲地木条围成一个木框,不计螺丝大小,其中相邻两螺丝地距离依序为2、3、4、6,且相邻两木条地夹角均可调整,若调整木条地夹角时不破坏此木框,则任两螺丝地距离地最大值是( ▲)A 、5 B 、6 C 、7 D 、10第Ⅱ卷(非选择题 共126分)二.填空题(本大题共10题,每题3分,共30分.把答案填在答题卡相应地横线上)9、水是生命之源,水是由氢原予和氧原子组成地,其中氢原子地直径为0.0000000001m ,把这个数值用科学记数法表示为▲m 10、“同位角相等”地逆命题是_______________▲______.11、等腰三角形地两边长分别为5和11,则它地周长为▲12、若,21,8==n m a a 则=-n m a 32▲. 13、如果2x y -=,3xy =,则22x y xy -=▲.14、当s =t +12时,代数式s 2-2st +t 2地值为▲. 15、方程72=+y x 地正整数解分别为▲.17、不等式组⎩⎨⎧+>+<+1159m x x x 地解集是x >2,则m 地取值范围是▲. 18、在矩形ABCD 中,放入六个形状、大小相同地长方形,所标尺寸如图所示,则图中阴影部分地面积是▲2cm .三、解答题:(本大题共10题,共96分.解答应写出文字说明、证明过程或演算步骤)19、(本题满分8分,每小题4分)计算或化简:(1)0131(2009)()(2)2--++-;(2)()()()y x x y y x -+--33322 20、(本题满分8分,每小题4分)因式分解:(1)2()()a a b b b a ---(2)4422+816a b a b -- 21、(本题满分8分)解不等式组:()x 3+3x+1213x 18x <-⎧≥⎪⎨⎪---⎩①②.同时写出不等式组地整数解.22、(本题满分8分)如图,AD⊥BC 于D ,EG⊥BC 于G ,∠E=∠1,可得AD 平分∠BAC. 理由如下:∵AD⊥BC 于D ,EG⊥BC 于G ,( 已知 )∴∠ADC=∠EGC=90°,( )∴AD∥E G ,( )∴∠1=∠2,( )=∠3,( )第16题图 第18题图又∵∠E=∠1(),∴∠2=∠3 ( )∴AD 平分∠BAC.( )23、(本题满分10分)解方程组⎩⎨⎧=-=+872y cx by ax 时,一同学把c 看错而得到⎩⎨⎧=-=22y x ,而正确地解是⎩⎨⎧-==23y x ,求a 、b 、c 地值. 24、(本题满分10分)食品安全是老百姓关注地话题,在食品中添加过量地添加剂对人体有害,但适量地添加剂对人体无害且有利于食品地储存和运输.某饮料加工厂生产地A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?25、(本题满分10分)问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式地因式分解带来地方便,快捷.相信通过下面材料地学习探究,会使你大开眼界并获得成功地喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5) ①=2002-52②=39975(1)例题求解过程中,第②步变形是利用(填乘法公式地名称)(2)用简便方法计算:9×11×101问题2:对于形如222x xa a ++这样地二次三项式,可以用公式法将它分解成()2x a +地形式.但对于二次三项式2223x xa a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +地和成为一个完全平方式,再减去2a ,整个式子地值不变,于是有:()2222222323x xa a x ax a a a +-=++--()224x a a =+-()()222x a a =+-()()3x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子地值不变地方法称为“配方法”.利用“配方法”分解因式:268a a -+26、(本题满分10分)为了防控甲型H7N9流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次..购买这两种消毒液(不包括已购买地100瓶),使乙种瓶数是甲种瓶数地2倍,且这次所需费用不多于...1200元(不包括之前地780元),求甲种消毒液最多能再购买多少瓶?27、(本题满分12分)为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号地设备,其中每台地价格、月处理污水量及年消耗费如右表:经预算,该企业购买设第24题图备地资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生地污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问地条件下,若每台设备地使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水地费用包括购买设备地资金和消耗费)28、(本题满分12分)认真阅读下面关于三角形内外角平分线所夹角地探究片段,完成所提出地问题.探究1:如图1,在ABC ∆中,O 是ABC ∠与ACB ∠地平分线BO 和CO 地交点,分析发现A BOC ∠+=∠2190 ,理由如下: ∵BO 和CO 分别是ABC ∠,ACB ∠地角平分线 ACB ABC ∠=∠∠=∠∴212,211 A A ACB ABC ∠-=∠-=∠+∠=∠+∠∴2190)180(21)(2121 A A BOC ∠+=∠--=∠+∠-=∠∴2190)2190(180)21(180 (1)探究2:如图2中, O 是ABC ∠与外角ACD ∠地平分线BO 和CO 地交点,试分析 BOC ∠与A ∠有怎样地关系?请说明理由.(2)探究3: 如图3中,O 是外角DBC ∠与外角ECB ∠地平分线BO 和CO 地交点,则 BOC ∠与A ∠有怎样地关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD 中,O 是∠AB C 与∠DCB 地平分线BO 和CO 地交点,则 ∠BOC 与∠A+∠D 有怎样地关系?(直接写出结论)(4)运用:如图5,五边形ABCDE 中,∠BCD 、∠EDC 地外角分别是∠FCD 、∠GDC ,C P 、DP 分别平分∠FCD 和∠GDC 且相交于点P ,若∠A=140°,∠B=120°,∠E=90°,则∠CPD=_____度.邗江区七年级期末测试卷参考答案(2013.6)一、选择题(本大题共8题,每题3分,共24分.每题地四个选项中,只有一个选项是符合要求地.)二.填空题(本大题共10题,每题3分,共30分.把答案填在答题卡相应地横线上)9、10110-⨯; 10、相等地角是同位角; 11、27;12、51213、6; 14、14 ; 15、13x y =⎧⎨=⎩,32x y =⎧⎨=⎩,51x y =⎧⎨=⎩; 16、360°; 17、1m ≤; 18、244cm .三、解答题:21、解:不等式①去分母,得x ﹣3+6≥2x+2,移项,合并得x≤1.······(2分) 不等式②去括号,得1﹣3x+3<8﹣x ,移项,合并得x >﹣2.········(4分)不等式组地解集在数轴上表示为:.············(7分)∴不等式组地解集为:﹣2<x≤1.···················(6分)∴它地整数解为-1,0,1.·····················(8分)22、∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,( 垂直地定义 )················(1分)∴AD ∥EG ,( 同位角相等,两直线平行 )··············(2分)∴∠1=∠2,( 两直线平行,内错角相等 )··············(3分)∠E =∠3,(两直线平行,同位角相等)·················(5分)又∵∠E=∠1(已知)························(6分)∴∠2 = ∠3 (等量代换)····················(7分)∴AD 平分∠BAC ( 角平分线定义 )·················(8分)24、解设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得:·········(1分)10023270x y x y +=⎧⎨+=⎩··························(7分) 解得:3070x y =⎧⎨=⎩ .··························(9分)答:A 饮料生产了30瓶,B 饮料生产了70瓶.···············(10分)25、解:(1)故例题求解过程中,第②步变形是利用平方差公式;·······(2分)(2)9×11×101=(10﹣1)×(10+1)×(100+1)·····················(3分)=(100﹣1)×(100+1)························(4分)=10000﹣1······························(5分)=9999································(6分)(2)a 2﹣6a+8=a 2﹣6a+9﹣1···························(8分)=(a ﹣3)2﹣1=(a ﹣2)(a ﹣4).·························(10分)26、解(1)设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶. ······································ (1分) 依题意,得10069780x y x y +=⎧⎨+=⎩,.······························································································ (3分) 解得:4060x y =⎧⎨=⎩,. ··················································································································· (4分) 答:甲种消毒液购买40瓶,乙种消毒液购买60瓶. ························································· (5分)(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶. ········································ (6分) 依题意,得6921200y y +⨯≤. ························································································· (8分) 解得:50y ≤. ······················································································································ (9分) 答:甲种消毒液最多再购买50瓶······················(10分)(2)240x+200(10﹣x )≥2040,·······················(6分)解得x ≥1,所以x 为1或2.·····························(7分)当x=1时,购买资金为:12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元),所以为了节约资金,应选购A 型1台,B 型9台.···············(8分)(3)10年企业自己处理污水地总资金为:102+1×10+9×10=202(万元),·······················(9分)若将污水排到污水厂处理:2040×12×10×10=2448000(元)=244.8(万元).···············(10分)节约资金:244.8﹣202=42.8(万元).····················(12分)28、解:(1)探究2结论:∠BOC=12A ∠………2分 理由如下:∵ BO 和CO 分别是∠ABC 和∠ACD 地角平分线111,222ABC ACD ∴∠=∠∠=∠····················(3分) ACD ABC ∠∆又是的一个外角第一课件网系列资料版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.kavU4。
2012-2013学年第二学期扬州市江都区第二中学七年级数
学期末试卷
2013.5.15
1.本试卷满分150分,考试用时120分钟.
2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一.用心选一选(每题3分,共24分)
1.下面式子正确的是 ( ) A.623x x x =⋅ B.1055x x x =+ C.2
36x x x =÷ D.933)(x x = 2.纳米是一种长度单位,1纳米= 10
9
-米.已知某种植物的花粉的直径约为45000纳米,那
么用科学记数法表示该种花粉的直径为 ( ) A.4
105.4⨯ B.5
105.4-⨯ C.4
105.4-⨯ D.9
105.4-⨯ 3.下列算式能用平方差公式计算的是 ( ) A.)2)(2(a b b a -+ B.)12
1
)(121(--
+x x C.))((n m n m +--- D.)3)(3(y x y x +--
4.不等式26x -≤0的自然数解的个数为 ( ) A .1个 B .2个 C .3个 D .4个 5.若2
2
4x Mxy y -+是一个完全平方式,那么M 的值是( )
A. 2
B. ±2
C. 4
D.±4 6.已知关于x 的不等式(1-a )x >2的解集是x <
2
1a
-,则a 的取值范围( ) A.a >0 B.a >1 C.a <0 D.a <1
7.不等式组⎩
⎨⎧+>+<+1,
159m x x x 的解集是2>x ,则m 的取值范围是 ( )
A. m ≤2
B. m ≥2
C.m ≤1
D. m >1
8.如图:PC 、PB 是∠ACB 、∠ABC 的平线,∠A =40º, ∠BPC =( )
F
E
D
C
B
A
13题图
A.∠BPC =70º
B.∠BPC =140º
C.∠BPC =110
º D.∠BPC =40º
二.细心填一填:(每题3分,共30分) 9.若,2
1
,3=
=n m
a a
则=-n m a 32 。
10. 若2132m m x y ++=,=,则用x 的代数式表示y 为 . 11.已知:2,3=-=+ab b a ,则=+2
2
ab b a ____ ____ .
12命题“对顶角相等”的逆命题是 。
13.如图,将边长为3个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD 的周长为 个单位.
14. 如图所示,是用一张长方形纸条折成的.如果∠1=130°,那么∠2=___ ___ °. 15.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式是
16.若x 2+y 2+2x -4y +5=0 则y
x = .
17.若不等式x < m 的正整数解有1,2,3, 则m 的取值范围是 。
18.一个多边形截去一个角后,形成新多边形的内角和为1800°,则原多边形边数为 . 三.耐心做一做(本大题共8题,计96分) 19.计算:(本题6分)
P
C
A
B
14题图
a
b
b
甲
乙
a
2012201220)3()3
1()21
()14.3(-⨯+--- π
20.将下列各式因式分解:(本题10分)
(1)2
416x - (2)222224)(b a b a -+
21.解方程组:(本题10分)
(1)⎩⎨⎧=-=-5231y x y x (2)⎪⎪⎩⎪⎪⎨⎧=
---=+-+121334
304
2
31y x y x
22.先化简,再求值.(本题6分)
(x +2)2-(x +1)(x -1)+(2x -1)(x -2),其中x= -3
23.(本题10分) 解下列不等式(组),并把解集在数轴上表示出来: ⑴ 21
5312+--x x ≤1 (2)()()⎩⎨⎧+〈+-≤-7
513412x x x x
24.(本题10分)
已知,如图,∠1=∠ACB ,∠2=∠3,那么∠BDC +∠DGF =180°吗?说明理由.
3
2
1A
B
C
D E
G F
第21题图
25.(本题10分)已知方程组⎩⎨
⎧-=-=+)
2( 24)1(
155by x y ax ,由于甲看错了方程(1)中的a 得到方
程组的解为⎩⎨
⎧=-=13y x ,乙看错了方程(2)中的b 得到方程组的解为⎩⎨⎧==4
1
y x 若按正确的a .b
计算,求原方程组的解
26.(本题10分) 已知方程组⎩⎨⎧--=++=-a
y x a
y x 731的解x 为非正数,y 为负数.
(1)求a 的取值范围;
(2)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为
x <1.
27.(本题12分).为支持抗震救灾,我市A 、B 两地分别向灾区捐赠物资100吨和180吨。
需全部运往重灾区C 、D 两县,根据灾区的情况,这批赈灾物资运往C 县的数量比运往D 县的数量的2倍少80吨。
(1)求这批赈灾物资运往C 、D 两县的数量各是多少吨?
(2)设A 地运往C 县的赈灾物资为x 吨(x 为整数),若要B 地运往C 县的赈灾物资数量大于A 地运往D 县的赈灾物资数量的2倍,且要求B 地运往D 县的赈灾物资数量不超过63吨,则A 、B 两地的赈灾物资运往C 、D 两县的方案有几种?
28.(本题12分)
如下几个图形是五角星和它的变形.
(1)图⑴ 中是一个五角星形状,求∠A +∠B +∠C +∠D +∠E = ;
(2)图⑴中的点A 向下移到BE 上时(如图⑵)五个角的和(即∠CAD +∠B +∠C +∠D +∠E )有无变化?说明你的结论的正确性;
(3)把图⑵中的点C 向上移动到BD 上时(如图⑶),五个角的和(即∠CAD +∠B +∠ACE +∠D +∠E )有无变化?说明你的结论的正确性.
A
B
C
D E
(1)
A B C
D
E
(2)
B
A
C
D
E
(3)
参考答案
一、选择题 二、填空题:
9.72; 10. x +2; 11.- 6; 12.相等的角是对顶角; 13.13; 14.65°;
15.()()b a b a b a -+=-2
2 ; 16. 1; 17.43≤m ;
18.11,12,13.
三、解答题: 19、-2
20.①解:原式=4(x +2)(x -2) ②解:原式= (a +b )2
(a -b )2
21.①⎩⎨⎧==23y x ②⎩
⎨⎧==22y x
22.28
23.①1-≥x ②22≤-x (图略) 24.解:∵∠1=∠ACB
∴DE ∥BC ……………… 2分 ∴∠2=∠DCF ……………… 4分 ∵∠2=∠3
∴∠3=∠DCF ……………… 6分 ∴CD ∥FG ……………… 8分 ∴∠BDC +∠DGF =180° ……………… 10分 说明:本题如果学生先回答:∠BDC +∠DGF =180°,给2分.
题号 1 2 3 4 5 6 7 8 答案 D
B
C
D
D
B
C
C
3
2
1A
B
C
D E
G F
图8
25.510a b =-⎧⎨=-⎩, 167
5
7x y ⎧=-⎪⎪⎨⎪=⎪⎩
26 . ①32≤-a ②a =-1
27. ⑴ 运往C ,D 两县的数量各是160吨,120吨。
⑵方案共有三种,分别为:
①A 运往C 县41吨,B 运往C 县119吨 ;A 运往D 县59吨,B 运往D 县61吨 ②A 运往C 县42吨,B 运往C 县118吨 ;A 运往D 县58吨,B 运往D 县62吨 ③A 运往C 县43吨,B 运往C 县117吨 ;A 运往D 县57吨,B 运往D 县63吨. 28.答案略.。