海南省海口市高考数学模拟试卷(文科)(4月份)解析版
- 格式:doc
- 大小:450.76 KB
- 文档页数:14
海南省海口市2024高三冲刺(高考数学)统编版(五四制)模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A .B .C .D .第(2)题已知复数(为虚数单位),则在复平面内对应的点位于第( )象限.A .四B .三C .二D .一第(3)题有一个圆锥形铅锤,其底面直径为,母线长为.P 是铅锤底面圆周上一点,则关于下列命题:①铅锤的侧面积为;②一只蚂蚁从P 点出发沿铅锤侧面爬行一周、最终又回到P 点的最短路径的长度为.其中正确的判断是( )A .①②都正确B .①正确、②错误C .①错误、②正确D .①②都错误第(4)题已知函数,若不相等的实数,,成等比数列,,,,则、、的大小关系为( )A .B .C .D .第(5)题若函数与的图象的任意连续三个交点均构成钝角三角形,则正实数的取值范围是( ).A .B .C .D .第(6)题若函数有两个零点,则的取值范围为( )A.B .C.D .第(7)题某几何体的三视图如图所示(单位:),则该几何体的体积是A.B.C.D.第(8)题若集合,,则( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,若(为自然对数的底数),则()A.B.C.D.第(2)题在平面直角坐标系中,,,且,MN是圆Q:的一条直径,则()A.点P在圆Q外B.的最小值为2C.D.的最大值为32第(3)题下列命题正确的是()A.两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1B.对具有线性相关关系的变量x、y,有一组观测数据,其线性回归方程是,且,则实数的值是C.已知样本数据的方差为4,则的标准差是4D.已知随机变量,若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知且,函数在上有且仅有两个零点,则的取值范围是__________.第(2)题已知,下列四个结论正确的序号是______.①函数在区间上是减函数;②点是函数图象的一个对称中心;③函数的图象可以由函数的图象向左平移个单位长度得到;④若,则的值域为.第(3)题抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线的焦点为,一平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则直线的斜率为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.组别频数2515020025022510050(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:(ⅰ)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;(ⅱ)每次获赠送的随机话费和对应的概率为:赠送的随机话费(单元:元)2040概率0.750.25现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.参考数据与公式:,若,则①;②;③.第(2)题设函数.(1)证明:当时,;(2)记,若有且仅有2个零点,求的值.第(3)题已知函数,其导函数为.(1)若在不是单调函数,求实数a的取值范围;(2)若在上恒成立,求实数a的最小整数值.第(4)题如图,已知三棱台的体积为,平面平面,是以为直角顶点的等腰直角三角形,且,(1)证明:平面;(2)求点到面的距离;(3)在线段上是否存在点,使得二面角的大小为,若存在,求出的长,若不存在,请说明理由.第(5)题已知函数.(1)先判断函数单调性并用定义法证明;(2)是否存在实数a使函数为奇函数,并说明理由.。
2020年海南省海口市高考数学模拟试卷(二)(4月份)一、选择题(本大题共12小题,共60.0分)1.=()A. B. C. D.2.设集合A={x|0<x2≤4},B={x|x>-1},则A∩B=()A. (-1,2]B. (-1,0)∪(0,2]C. [-2,+∞)D. (-1,0)∪(0,2)3.某地区的高一新生中,来自东部平原地区的学生有2400人,中部丘陵地区的学生有1600人,西部山区的学生有1000人.计划从中选取100人调查学生的视力情况,现已了解到来自东部、中部、西部三个地区学生的视力情况有较大差异,而这三个地区男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是() .A. 简单随机抽样B. 按性别分层抽样C. 系统抽样D. 按地区分层抽样4.已知点M为双曲线C:x2=1的左支上一点,F1,F2分别为C的左、右焦点,则|MF1|+|F1F2|-|MF2|=()A. 1B. 4C. 6D. 85.设x,x+10,x-5是等比数列{a n}的前三项,则a n=()A. -4×(-)n-1B. -4×(-)nC. ×(-)n-1D. -4×()n-16.下列不等式正确的是()A. B.C. D.7.已知变量x,y满足约束条件,则z=x+2y的最小值为()A. 6B. 7C. 8D. 98.(+x)5的展开式中系数为有理数的各项系数之和为()A. 1B. 20C. 21D. 319.若直线y=kx-2与曲线y=1+3ln x相切,则k=()A. 3B.C. 2D.10.等差数列{a n}的首项为2,公差不等于0,且,则数列的前2019项和为( )A. B. C. D.11.某高为4的三棱柱被一个平面截去一部分后得到一个几何体,它的三视图如图所示,则该几何体的体积与原三棱柱的体积之比是()A. B. C. D.12.已知直线y=2x+m与椭圆C:=1相交于A,B两点,O为坐标原点.当△AOB的面积取得最大值时,|AB|=()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量,的夹角为60°,且满足•=24,||=6,则||=______.14.将函数f(x)=sin(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,则g(x)的最小正周期是______.15.若函数f(x)=2x+1+log2a有零点,则a的取值范围为______.16.在空间直角坐标系O-xyz中,A(0,0,1),B(m2,0,0),C(0,1,0),D(1,2,1),若四面体OABC的外接球的表面积为6π,则异面直线OD与AB所成角的余弦值为______.三、解答题(本大题共7小题,共84.0分)17.在△ABC中,3sin A=2sin B,.(1)求cos2C;(2)若AC-BC=1,求△ABC的周长.18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求B1F与平面AEF所成角的正弦值.19.根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如下.将河流水位在[20,22),[22,24),[24,26),[26,28),[28,30),[30,32),[32,34]各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.(1)求未来4年中,至少有2年该河流水位x∈[26,30)的概率(结果用分数表示).(2)已知该河流对沿河A工厂的影响如下:当X∈[20,26)时,不会造成影响;当X∈[26,30)时,损失50000元;当X∈[30,34]时,损失300000元.为减少损失,A工厂制定了三种应对方案.方案一:不采取措施;方案二:防御不超过30米的水位,需要工程费用8000元;方案三:防御34米的最高水位,需要工程费用20000元.试问哪种方案更好,请说明理由.20.在平面直角坐标系xOy中,抛物线C:x2=6y与直线l:y=kx+3交于M,N两点.(1)设M,N到y轴的距离分别为d1,d2,证明:d1和d2的乘积为定值;(2)y轴上是否存在点p,当k变化时,总有∠OPM=∠OPN?若存在,求点P的坐标;若不存在,请说明理由.21.已知函数f(x)=e x(ln x+1).(1)证明:函数f(x)在其定义域上是单调递增函数.(2)设m>0,当x∈[1,+∞)时,不等式≤0恒成立,求m的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l:y=kx(x≥0)与曲线C交于A,B两点.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)求的最大值.23.已知函数f(x)=|x+2|+2|x-1|.(1)求f(x)的最小值;(2)若不等式f(x)+x-a<0的解集为(m,n),且n-m=6,求a的值.-------- 答案与解析 --------1.答案:D解析:解:=.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.答案:B解析:解:A={x|-2≤x≤2,且x≠0};∴A∩B=(-1,0)∪(0,2].故选:B.可求出集合A,然后进行交集的运算即可.考查描述法、区间的定义,一元二次不等式的解法,以及交集的运算.3.答案:D解析:【分析】本题主要考查抽样方法,熟记每种抽样方法的特征即可,属于基础题型.根据抽样方法的特征,即可得出结论.【解答】解:由于该地区东部、中部、西部三个地区学生的视力情况有较大差异,故按地区分层抽样.故选:D.4.答案:B解析:【分析】本题考查双曲线的简单性质以及双曲线的定义的应用,考查计算能力,属于中档题.利用双曲线方程,通过双曲线的定义,转化求解即可.【解答】解:双曲线C:x2=1,可得a=1,b=2,c=3,则点M为双曲线C:x2=1的左支上一点,F1,F2分别为C的左、右焦点,则|MF1|+|F1F2|-|MF2|=-2a+2c=4.故选B.5.答案:A解析:解:x,x+10,x-5是等比数列{a n}的前三项,∴x(x-5)=(x+10)2,解得x=-4,x+10=6,∴公比q=-,因此a n=-4×.故选:A.利用等比数列的通项公式即可得出.本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.6.答案:D解析:【分析】本题考查三角函数值以及对数比较大小的问题,熟记三角函数与对数函数的性质即可,属于基础题.根据,,,用排除法即可得出结果.【解答】解:∵,,,∴排除A,B,C,>log52,故选:D.7.答案:C解析:解:由变量x,y满足约束条件,作出可行区域如图,因为z=x+2y可化为,直线过点A时,截距最小,即z最小;由,解得A(2,3),所以z min=2+6=8.故选:C.本题主要考查简单的线性规划问题,属于基础题.由约束条件作出可行域,再由z=x+2y化为,平移该直线,可得z的最小值.8.答案:C解析:解:由二项式展开式通项得:T r+1=2x r,又0≤r≤5,r∈N,由∈Z,得r=2或r=5,即(+x)5的展开式中系数为有理数的各项系数之和为2+=21,故选:C.由二项式定理及有理数的定义得:T r+1=2x r,又0≤r≤5,r∈N,由∈Z,得r=2或r=5,即(+x)5的展开式中系数为有理数的各项系数之和为2+=21,得解.本题考查了二项式定理,属中档题.9.答案:A解析:【分析】本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.设出切点坐标,欲求k的值,只需求出切线的斜率的值即可,故先利用导数求出在切线处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=1+3ln x,∴y′==,设切点为(m,1+3ln m),得切线的斜率为k==,即曲线在点(m,1+3ln m)处的切线方程为:y-(1+3ln m)=(x-m),即y=x+3ln m-2,∵直线y=kx-2与曲线y=1+3ln x相切,∴3ln m-2=-2,即m=1,即=k,则k=3.故选A.10.答案:B解析:【分析】本题主要考查等差数列的通项公式、以及裂项相消法求数列的和,熟记公式即可,属于常考题型.先设等差数列{an}的公差为d,根据题中条件求出公差,得到an=n+1再由裂项相消法即可求出结果.【解答】解:设等差数列{a n}的公差为d,由a1=2,a32=a1a7,可得(2+2d)2=2(2+6d),所以d=1,因此a n=n+1,所以=,所以数列{}的前2019项和为:==.11.答案:B解析:【分析】本题主要考查几何体的三视图以及几何体的体积,熟记公式即可,属于常考题型.先由三视图确定该几何体是四棱锥,结合题中熟记,求出体积,再求出原三棱柱的体积,即可得出结果.【解答】解:由侧视图、俯视图知该几何体是高为2且底面积为=5的四棱锥,其体积为.又三棱柱的体积为×2×2×4=8,故体积比为:.故选:B.12.答案:A解析:解:由,得21x2+20mx+5m2-5=0.设A(x1,y1),B(x2,y2),则,,==.又O到直线AB的距离,则△AOB的面积=≤=,当且仅当m2=21-m2,即时,△AOB的面积取得最大值.此时,.故选:A.先联立直线与椭圆方程,设A(x1,y1),B(x2,y2),由韦达定理得到,,结合弦长公式表示出弦长|AB|,进而表示出三角形的面积,根据面积最大值,可求出m2,代入弦长的表达式,即可得出结果.本题主要考查椭圆中的弦长问题,通常需要联立直线与椭圆方程,结合韦达定理、以及弦长公式等求解,属于常考题型.解析:解:向量,的夹角为60°,且满足•=24,||=6,则6||cos60°=24,解得||=8.故答案为:8.直接利用向量的数量积,结合向量的夹角,转化求解即可.本题考查向量的数量积公式的应用,考查计算能力.14.答案:π解析:【分析】本题主要考查三角函数的图象变换问题以及函数的周期,熟记三角函数的性质即可,属于常考题型.先由图象的变化得到g(x)的解析式,再由正弦函数的周期性即可求出函数的最小正周期.【解答】解:将函数f(x)=sin(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)=sin(2x-)的图象,则g(x)的最小正周期是=π,故答案为π.15.答案:(0,)解析:【分析】本题考查了函数的零点与方程的解的相互转化及方程有解问题,属中档题.由函数的零点与方程的解的相互转化及方程有解问题得:函数f(x)=2x+1+log2a有零点,即-(1+log2a)=2x有解,又2x∈(0,+∞),所以-(1+log2a)>0,log2a<-1,即0<a,得解.【解答】解:由函数f(x)=2x+1+log2a有零点,即-(1+log2a)=2x有解,又2x∈(0,+∞),所以-(1+log2a)>0,log2a<-1,即0<a,故答案为(0,).16.答案:解析:【分析】本题主要考查几何体中外接球的计算、以及异面直线所成角的计算,熟记公式即可,属于基础题.先由题意得到四面体OABC的外接球即是四面体所在长方体的外接球,再由外接球的表面积求出m2,从而可得到向量坐标,根据cos<>=,即可求出结果.解:由题意易知OA,OB,OC两两垂直,∴四面体OABC的外接球即是四面体所在长方体的外接球,且外接球直接等于体对角线的长,因此,解得m2=2,从而,则cos<>=.∴异面直线OD与AB所成角的余弦值为.故答案为:.17.答案:解:(1)∵,∴cos2C==,∴cos2C=2cos2C-1=2×-1=-.(2)∵3sin A=2sin B,∴由正弦定理可得:3a=2b,又∵AC-BC=1,即:b-a=1,∴解得:a=2,b=3,∵由(1)可得:cos C=,∴由余弦定理可得:c===,∴△ABC的周长a+b+c=5+.解析:(1)由已知利用同角三角函数基本关系式可求cos2C=的值,根据二倍角的余弦函数公式即可计算得解.(2)由正弦定理可得:3a=2b,结合b-a=1,即可解得a,b的值,由(1)可得cos C=,利用余弦定理可求c的值,即可得解△ABC的周长.本题主要考查了同角三角函数基本关系式,二倍角的余弦函数公式,正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.答案:解:(1)证明:∵直三棱柱ABC-A1B1C1中,AC⊥AB,∴可以以A1为顶点建立空间坐标系如图,∵AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点,取B1C1中点D,∴A1(0,0,0),D(2,2,0),E(2,0,3),F(0,2,6),在Rt△A1B1C1中,A1D⊥B1C1,∴A1D⊥平面BCC1B1,∴为平面BCC1D1的一个法向量,而,,∴=-4+4=0,∴,又EF⊄平面BCC1B1,∴EF∥平面BCC1B1;(2)易知A(0,0,6),B1(0,4,0)∴,,设是平面AEF的一个法向量,则,,取x=1,则y=0,z=,即,设B1F与平面AEF所成角为θ,则sinθ=|cos|=||==,故B1F与平面AEF所成角的正弦值为.解析:(1)建立空间坐标系,利用与平面BCC1B1的法向量垂直可证;(2)找到和平面AEF的法向量,代入公式计算即可.此题考查了线面平行,斜线与平面所成角等,难度适中.19.答案:解:(1)由频率分布直方图可知河流水位X∈[26,30)的概率为P(A)=(0.075+0.025)×2=,记“在未来4年中,至少有2年河流水位X∈[26,30)”为事件A,则P(A)=1-=1-[+]=,(2)记A工厂的工程费与损失费之和为Y,(单位:元)①若采用方案一,则Y的分布列为:Y050000300000P0.780.20.02YY8000300000P0.980.02E(Y)=8000+300000×0.02=14000.③若采用方案三:E(Y)=20000(元).因为14000<16000<20000,所以A工厂应采用方案二.解析:本题主要考查频率分布直方图、以及离散型随机变量的期望与分布列,熟记概念和公式即可,属于常考题型,为中档题.(1)根据频率分布直方图,先得到河流水位X∈[26,30)的概率,再记“在未来4年中,至少有2年河流水位X∈[26,30)为事件A,即可由P(A)=1-求出结果;(2)记A工厂的工程费与损失费之和为Y,根据题意分别求出三种方案中Y的期望,比较大小,取期望最小的即可.20.答案:解(1)证明:将y=kx+3代入x2=6y,得x2-6kx-18=0.设M(x1,y1),N(x2,y2),则x1x2=-18,从而d1d2=|x1|•|x2|=|x1x2|=18为定值.(2)解:存在符合题意的点,证明如下:设P(0,b)为符合题意的点,直线PM,PN的斜率分别为k1,k2,.从而k1+k2=+==.当b=-3时,有k1+k2=0对任意k恒成立,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-3)符合题意.解析:(1)先将y=kx+3代入x2=6y,设M(x1,y1),N(x2,y2),结合韦达定理,即可证明结论成立;(2)先设设P(0,b)为符合题意的点,直线PM,PN的斜率分别为k1,k2,由∠OPM=∠OPN,得当k变化时,k1+k2=0恒成立,进而可求出结果本题主要考查直线与抛物线的位置关系、以及抛物线中的定点问题,通常需要联立直线与抛物线方程,结合韦达定理等求解,属于中档题.21.答案:证明:(1)因为x∈(0,+∞),f(x)=e x(ln x+1),所以f′(x)=e x(ln x++1),(x>0),令g(x)=ln x++1,(x>0),则=,(x>0).当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,则g(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.故g(x)min=g(1)=2>0,从而f′(x)>0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递增.解:(2)当x∈[1,+∞)时,不等式-≤0恒成立等价于当x∈[1,+∞)时,不等式-≤0恒成立,即当x∈[1,+∞)时,-恒成立.记h(x)=,φ(x)=-,则,φ′(x)=.因为当x≥1时,,所以h′(x)≤0在[1,+∞)恒成立,即h(x)在[1,+∞)上单调递减.因为当x≥1时,1-x≤0,所以φ′(x)≤0在[1,+∞)恒成立,即φ(x)在[1,+∞)上单调递减.记P(x)=mh(x)+φ(x),因为m>0,所以P(x)在[1,+∞)上单调递减,所以P(x)max=P(1)=.因为-≤0在[1,+∞)上恒成立,所以-e≤0,即m≤e2.又m>0,故m的取值范围为(0,e2].解析:(1)先对函数求导,得到f′(x)=e x(ln x++1),(x>0),令g(x)=ln x++1,(x>0),再由导数方法研究g(x)单调性,求出最小值即可;(2)先将当x∈[1,+∞)时,不等式-≤0恒成立,化为-≤0恒成立,令h (x)=,φ(x)=-,用导数方法研究其单调性,再记P(x)=mh(x)+φ(x),得到P(x)单调性,进而可得出结果.本题主要考查导数在函数中的应用,通常需要对函数求导,通过研究函数的单调性、最值等求解,属于常考题型,考查运算求解能力,考查化归与转化思想,是中档题.22.答案:解:(1)由(θ为参数),得(x-3)2+y2=4,即x2+y2-6x+5=0.故C的极坐标方程为ρ2-6ρcosθ+5=0.(2)设A(ρ1,α),B(ρ2,α),直线l:y=kx(k≥0)的极坐标方程为θ=α(ρ∈R),代入ρ2-6ρcosθ+5=0,得ρ2-6ρcosα+5=0,所以ρ1+ρ2=6cosα,ρ1ρ2=5.因为k≥0,所以cosα>0,则ρ1>0,ρ2>0,则+=+==.当cosα=1时,+取得最大值,且最大值为.解析:本题主要考查参数方程与普通方程的互化、以及直角坐标方程与极坐标方程的互化,熟记公式即可,属中档题.(1)先由参数方程得到普通方程,再由普通方程即可得到极坐标方程;(2)先设A(ρ1,α),B(ρ2,α),以及直线l的极坐标方程为θ=α(ρ∈R),代入(1)中的结果,得到ρ2-6ρcosα+5=0,由韦达定理,以及+=+,即可求出结果.23.答案:解:(1)f(x)=|x+2|+2|x-1|=,则f(x)在(-∞,1]上单调递减,在(1,∞)上单调递增,所以f(x)min=f(1)=3.(2)因为g(x)=f(x)+x-a=,令-2x-a<0,则x;令4x-a<0,则x<,所以不等式f(x)+x-a<0的解集为(-,),又不等式f(x)+x-a<0的解集为(m,n),且n-m=6,所以-(-)=6,故a=8.解析:本题主要考查含绝对值不等式,熟记不等式的解法即可,属中档题.(1)先将函数f(x)写出分段函数的形式,再根据每一段的单调性,确定函数f(x)的单调性,即可得出结果;(2)先将函数g(x)写出分段函数的形式,根据函数g(x)单调性,分别由-2x-a<0和4x-a<0,求出不等式f(x)+x-a<0的解集,在由题中条件即可得出结果.。
海南省海口市四中2025届高考数学四模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( )A .13i +B .13i -C .13i -+D .13i --2.若21i iz =-+,则z 的虚部是 A .3 B .3- C .3iD .3i - 3.已知集合{}2(,)|1A x y y x==-,{}(,)|2B x y y x ==,则A B 中元素的个数为( ) A .3 B .2 C .1 D .04.己知全集为实数集R ,集合A ={x |x 2 +2x -8>0},B ={x |log 2x <1},则()R A B ⋂等于( ) A .[-4,2] B .[-4,2) C .(-4,2) D .(0,2)5.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .26.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( )A .③④B .①③C .②③D .①②7.数列{}n a 的通项公式为()n a n c n N*=-∈.则“2c <”是“{}n a 为递增数列”的( )条件. A .必要而不充分 B .充要 C .充分而不必要D .即不充分也不必要 8.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 9.若31n x x ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85 B .84 C .57 D .5610.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( )A .714-B .24-C .514-D .30-12.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( ) A .20 B .30 C .50 D .60二、填空题:本题共4小题,每小题5分,共20分。
海南省海口市(新版)2024高考数学统编版(五四制)摸底(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的部分图象如图所示,则函数的解析式为()A.B.C.D.第(2)题已知为圆上动点,直线和直线(,)的交点为,则的最大值是()A.B.C.D.第(3)题有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,则直线直线a”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误第(4)题已知曲线在点处切线的斜率为8,A.B.C.D.第(5)题已知双曲线的离心率为,则点到的渐近线的距离为A.B.C.D.第(6)题在中,,点满足,且,则()A.B.C.D.第(7)题某单位计划从5人中选4人值班,每人值班一天,其中第一、二天各安排一人,第三天安排两人,则安排方法数为()A.30B.60C.120D.180第(8)题如图,复数在复平面内对应的点为()A.E B.F C.G D.H二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题抛物线的准线方程为,过焦点的直线交抛物线于,两点,则()A.的方程为B.的最小值为C.过点且与抛物线仅有一个公共点的直线有且仅有2条D.过点分别作的切线,交于点,则直线的斜率满足第(2)题已知的内角的对边分别为,则以下说法正确的有()A.若,则是锐角三角形B.,则是锐角三角形C.若成等差数列,且,则面积的最大值是D.若成等比数列,则第(3)题如图所示,四面体的各棱长均为分别为棱的中点,为棱上异于顶点的点,则以下结论正确的为()A.B.直线与所成角的余弦值为C.四面体的外接球体积为D.平面截四面体所得的截面图形的周长最小值为8三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知中,,,点满足,则的值为___________.第(2)题已知,,则__________;满足的实数的取值范围是__________.第(3)题函数的图象在处的切线方程为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知点,平面上的动点S到F的距离是S到直线的距离的倍,记点S的轨迹为曲线C.(1)求曲线C的方程;(2)过直线上的动点向曲线C作两条切线,,交x轴于M,交y轴于N,交x轴于T,交y轴于Q,记的面积为,的面积为,求的最小值.第(2)题已知椭圆过点,分别为椭圆C的左、右焦点且.(1)求椭圆C的方程;(2)过P点的直线与椭圆C有且只有一个公共点,直线平行于OP(O为原点),且与椭圆C交于两点A、B,与直线交于点M(M介于A、B两点之间).(i)当面积最大时,求的方程;(ii)求证:,并判断,的斜率是否可以按某种顺序构成等比数列.第(3)题已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)求证:.第(4)题为不断改进劳动教育,进一步深化劳动教育改革,现从某单位全体员工中随机抽取3人做问卷调查.已知某单位有N名员工,其中是男性,是女性.(1)当时,求出3人中男性员工人数X的分布列和数学期望;(2)我们知道,当总量N足够大而抽出的个体足够小时,超几何分布近似为二项分布.现在全市范围内考虑.从N名员工(男女比例不变)中随机抽取3人,在超几何分布中男性员工恰有2人的概率记作;有二项分布中(即男性员工的人数)男性员工恰有2人的概率记作.那么当N至少为多少时,我们可以在误差不超过0.001(即)的前提下认为超几何分布近似为二项分布.(参考数据:)第(5)题我国无人机发展迅猛,在全球具有领先优势,已经成为“中国制造”一张靓丽的新名片,并广泛用于森林消防、抢险救灾、环境监测等领域.某森林消防支队在一次消防演练中利用无人机进行投弹灭火试验,消防员甲操控无人机对同一目标起火点进行了三次投弹试验,已知无人机每次投弹时击中目标的概率都为,每次投弹是否击中目标相互独立.无人机击中目标一次起火点被扑灭的概率为,击中目标两次起火点被扑灭的概率为,击中目标三次起火点必定被扑灭.(1)求起火点被无人机击中次数的分布列及数学期望;(2)求起火点被无人机击中且被扑灭的概率.。
海南省海口市(新版)2024高考数学统编版摸底(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知是虚数单位,,,则“”是“”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第(2)题如果向量,的夹角为,我们就称为向量与的“向量积”,还是一个向量,它的长度为,如果,,,则()A.B.16C.D.20第(3)题中,,,,则()A.B.C.D.第(4)题在中,“”是“”的()条件A.充分非必要B.必要非充分C.充要D.非充分非必要第(5)题已知实数满足,则的最大值是()A.B.4C.D.7第(6)题已知集合,则()A.B.C.D.第(7)题已知函数的定义域为,对任意,有,则不等式的解集是()A.B.C.D.第(8)题一个电路中含有(1)(2)两个零件,零件(1)含有A,B两个元件,零件(2)含有C,D,E三个元件,每个零件中有一个元件能正常工作则该零件就能正常工作,则该电路能正常工作的线路条数为()A.9B.8C.6D.5二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题近年来,报考教师资格证的人数越来越多,教师行业逐渐升温.下图给出了近四年四所师范院校的录取分数排名,则()A.近四年北京师范大学录取分数排名变化最不明显B.近四年湖南师范大学录取分数排名的平均值最大C.近四年华南师范大学录取分数排名的极差值最大D.近四年华中师范大学的生源质量呈现下降的趋势第(2)题已知,,为正实数,下列结论正确的有()A.B.C.D.第(3)题在一次党建活动中,甲、乙、丙、丁四个兴趣小组举行党史知识竞赛,每个小组各派10名同学参赛,记录每名同学失分(均为整数)情况,若该组每名同学失分都不超过7分,则该组为“优秀小组”,已知甲、乙、丙、丁四个小组成员失分数据信息如下,则一定为“优秀小组”的是()A.甲组中位数为2,极差为5B.乙组平均数为2,众数为2C.丙组平均数为1,方差大于0D.丁组平均数为2,方差为3三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题《数书九章》中称为秦九韶三斜求积公式;已知三角形的三边分别为,则该三角形的面积为__________;最小角的余弦值为__________.第(2)题斐波那契数列,又称黄金分割数列,因数学家莱昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…,在数学上,斐波那契数列以如下递推的方式定义:且中,则B中所有元素之和为奇数的概率为____.第(3)题已知,与的夹角,则在方向上的投影为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知的内角A,B,C的对边分别为a,b,c,且,,.(1)试判断三角形的形状;(2)若线段长为3,其端点分别落在边和上,求内切圆半径的最大值.第(2)题某农业大学组织部分学生进行作物栽培试验,由于土壤相对贫瘠,前期作物生长较为缓慢,为了增加作物的生长速度,达到预期标准,小明对自己培育的一株作物使用了营养液,现统计了使用营养液十天之内该作物的高度变化天数x12345678910作物高度y/cm9101011121313141414 (1)观察散点图可知,天数与作物高度之间具有较强的线性相关性,用最小二乘法求出作物高度关于天数的线性回归方程(其中用分数表示);(2)小明测得使用营养液后第22天该作物的高度为,请根据(1)中的结果预测第22天该作物的高度的残差.参考公式:.参考数据:.第(3)题已知函数.(1)判断的奇偶性;(2)若,判断在的单调性,并用定义法证明;(3)若,,判断函数的零点个数,并说明理由.第(4)题已知函数.(1)当时,讨论在区间上的单调性;(2)若当时,,求的取值范围.第(5)题如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,设,分别为,的中点.(1)求证://平面;(2)求证:平面平面.。
海南省海口市(新版)2024高考数学统编版(五四制)模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题中国古代的武成王庙是专门祭祀姜太公以及历代良臣名将的庙宇,这类庙宇的顶部构造颇有讲究.如图是某武成王庙顶部的剖面直观图,其中,,,且数列是第二项为的等差数列.若以为坐标原点,以,分别为,轴正方向建立平面直角坐标系,则直线的斜率为()A.0.4B.0.45C.0.5D.0.55第(2)题设函数,则下列函数中为奇函数的是()A.B.C.D.第(3)题将函数的图象向左平移个单位长度后得到函数的图象,若函数在上单调递增,则实数的取值范围是()A.B.C.D.第(4)题化简:()A.4B.2C.D.第(5)题已知函数,则与图象的交点个数是()A.6B.4C.3D.2第(6)题把函数的图象按向量平移,得到的图象,则()A.B.C.D.第(7)题已知函数,则()A.B.C.D.第(8)题已知集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,其中是自然对数的底数,下列说法中,正确的是()A .在是增函数B.设,则满足的正整数的最小值是2C.是奇函数D.在上有两个极值点第(2)题函数的部分图象如图所示,若,,,,恒成立,则实数的值可以为()A.B.C.D.第(3)题已知和分别是定义在R上的偶函数和奇函数,且,则下列说法中正确的是()A.4为的一个周期B.8为的一个周期C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知直线与圆和圆均相切,则__________,__________.第(2)题已知函数,当时,函数的最大值为_______ .第(3)题已知函数在上恰有10个零点,则m的取值范围是________________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列的前n项和为,___________,.(1)求数列的通项公式;(2)已知数列,当时,,.记数列的前n项和为,求.在下面三个条件中任选一个,补充在上面问题中并作答.①;②;③.注:如果选择多个条件分别解答,按第一个解答计分.第(2)题如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且⊥平面.(1)求证:;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.第(3)题已知函数,且.(1)讨论的单调性;(2)比较与的大小,并说明理由;(3)当时,证明:.第(4)题已知公差不为0的等差数列和等比数列满足,,且,,成等比数列.(Ⅰ)求和的通项公式;(Ⅱ)令求数列的前n项和.第(5)题甲和乙进行中国象棋比赛,每局甲赢的概率为0.8,甲输的概率为0.2,且每局比赛相互独立.(1)若比赛采取三局两胜制,且乙已经赢得比赛,则比赛需要的局数的数学期望为多少?(保留小数点后一位)(2)由于甲、乙实力悬殊,乙提出“甲赢5局之前乙赢2局,则乙胜”,求乙胜的概率.。
最新高三(下)4月联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.0076.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.407.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣311.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.高三(下)4月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”【考点】必要条件、充分条件与充要条件的判断.【分析】A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,即可判断出结论;B.利用非命题的定义即可判断出真假;C.若p∧q为假命题,则p,q至少一个为假命题,即可判断出真假;D.利用否命题的定义即可判断出真假.【解答】解:A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,因此.“f(0)=0”是“函数f(x)是奇函数”的既不充分也不必要条件,不正确;B.若p:.则¬p:∀x∈R,x2﹣x﹣1≤0,因此不正确;C.若p∧q为假命题,则p,q至少一个为假命题,因此不正确;D.“若,则”的否命题是“若,则”,正确.故选:D.4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义转化求解sinα的值.【解答】解:角α的终边上一点的坐标为(sin,cos)即(,),则由任意角的三角函数的定义,可得sinα=,故选:A.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.007【考点】系统抽样方法.【分析】从第5行第6个数2的数开始向右读,依次为253,313,457,860,736,253,007,其中860,736不符合条件故可得结论.【解答】解:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四数,第五个数应为328.故第五个数为328..故选:B.6.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列∴﹣=x n+1﹣x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.7.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.【考点】正弦函数的图象.【分析】由题意可得=2sinφ,结合(|φ|<)可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.【解答】解:∵函数f(x)=2sin(2x+φ)(|φ|<)的图象过点(0,),∴=2sinφ,由(|φ|<),可得:φ=,∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是(﹣,0).故选:B.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.【考点】由三视图求面积、体积.【分析】由三视图判断几何体的形状,通过三视图的数据求出几何体的体积,再计算原几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π;底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π;所以切削掉部分的体积为54π﹣34π=20πcm3.故选:A.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣3【考点】平面向量数量积的运算.【分析】由题意可得,可得四边形OBAC是平行四边形,结合||=||可得四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,可得∠ACB=∠AC0=30°,由投影的定义可得.【解答】解:∵,∴,即,可得四边形OBAC是平行四边形,∵△ABC的外接圆的圆心为O,半径为2,∴||=||=||=2,∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,∴∠ACB=∠AC0=30°,∴向量在方向上的投影为:cos∠ACB=2cos30°=.故选:A11.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】椭圆的简单性质.【分析】作出图形,则易知|AF2|=a+c,|BF2|=,再由∠BAF2是直线的倾斜角,易得k=tan∠BAF2,然后通过0<k<,分子分母同除a2得0<<求解.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f(x)的导数,函数g(x)的导数.由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则有f(x0)=g(x0),且f′(x0)=g′(x0),解出x0=a,得到b关于a的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b的最大值.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .【考点】函数的值.【分析】根据分段函数的表达式,直接代入进行求解即可.【解答】解:由分段函数可知,f()=log,f(﹣1)=,故答案为:.14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为12π.【考点】球的体积和表面积.【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求,再由球的表面积公式即可得到.【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,∴OA==,即球的半径R为,∴球O的表面积为S=4πR2=12π.故答案为:12π.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2.【考点】圆的标准方程.【分析】得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,∴|PC|的最大值为直径2.故答案为:2.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .【考点】余弦定理.【分析】利用正弦定理化简已知的第一个等式,得到a+b=4c,代入第二个等式中计算,即可求出c的长,利用三角形的面积公式表示出三角形ABC的面积S,代入已知的等式中,利用完全平方公式变形后,将a+b=4代入化简,即可求出cosC的值.【解答】解:△ABC中,∵sinA+sinB﹣4sinC=0,∴a+b=4c,∵△ABC的周长L=5,∴a+b+c=5,∴c=1,a+b=4.∵面积S=﹣(a2+b2),∴absinC=﹣(a2+b2)=﹣[(a+b)2﹣2ab]=ab,∴sinC=,∵c<a+b,C是锐角,∴cosC==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过联立a2=3、a4=7计算可知等差数列{a n}的首项和公差,从而可得其通项公式;通过等比数列{b n}成公比大于1的等比数列可确定b1=1、b2=2、b3=4,进而可求出首项和公比,从而可得通项公式;(Ⅱ)通过(I),利用分组求和法计算即得结论.【解答】解:(Ⅰ)设等差数列的首项和公差分别为a1、d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,∵等比数列{b n}成公比大于1的等比数列且{b1,b2,b3}={1,2,4},∴b1=1,b2=2,b3=4,∴b1=1,q=2,∴b n=2n﹣1;(Ⅱ)由(I)可知S n=(a1+a2+…+a n)+(b1+b2+…+b n)=+=n2+2n﹣1.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】独立性检验;古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优秀总计甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的性质.【分析】(1)证明FB∥平面AED,BC∥平面AED,利用面面平行的判定定理可得结论;(2)连接AC,AC∩BD=O,证明AO⊥面BDEF,即可求出四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.【考点】直线与圆的位置关系.【分析】(Ⅰ)设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,从而曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,由此能求出曲线C的方程.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则A(1+λ,),B(1+μ,),由此能求出直线AB的斜率.【解答】解:(Ⅰ)∵圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C,设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,∴曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,∴曲线C的方程为.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则直线QA、QB的一个方向向量为(1,k),(1,﹣k),则=λ(1,k),=μ(1,﹣k),∴A(1+λ,),B(1+μ,),代入=1,并整理,得,两式相减,得:λ﹣μ=﹣,两式相加,得:λ+μ=﹣,∴直线AB的斜率k AB==.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)法一:令,求出函数的导数,通过讨论m的范围求出函数的单调区间,从而求出m的最小值即可;法二:分离参数,得到恒成立,令,根据函数的单调性求出函数h(x)的最大值,从而求出m的最小值即可.【解答】解:(Ⅰ),所以.…令f′(x)=0得x=1;…由f′(x)>0得0<x<1,所以f(x)的单调递增区间为(0,1).由f′(x)<0得x>1,所以f(x)的单调递增区间为(1,+∞).…所以函数,无极小值…(Ⅱ)法一:令.所以.…当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为.所以关于x的不等式G(x)≤mx﹣1不能恒成立.…当m>0时,.令G′(x)=0得,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.…故函数G(x)的最大值为.令,因为.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.…法二:由F(x)≤mx﹣1恒成立知恒成立…令,则…令φ(x)=2lnx+x,因为,φ(1)=1>0,则φ(x)为增函数故存在,使φ(x0)=0,即2lnx0+x0=0…当时,h′(x)>0,h(x)为增函数当x0<x时,h′(x)<0,h(x)为减函数…所以,而,所以所以整数m的最小值为2.…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE •AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x <2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.2016年10月19日。
机密★启用前海口市2024届高三年级调研考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,12i2i-+对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知0b >,设甲:1a b ->1>,则( )A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件3.设l ,m 是两条直线,α,β是两个平面,则()A.若αβ∥,l α∥,m β∥,则l m ∥B.若αβ∥,l m ∥,m β⊥,则l α⊥C.若αβ⊥,l α∥,m β∥,则l m⊥ D.若αβ⊥,l α∥,m β∥,则l m∥4.已知椭圆1C :221123x y +=的2个焦点与椭圆2C :()2221016x y m m +=>的2个焦点构成正方形的四个顶点,则m =( )C.7D.55.某记者与参加会议的5名代表一起合影留念(6人站成一排),则记者站两端,且代表甲与代表乙不相邻的排法种数为()A.72B.96C.144D.2406.已知函数()f x 的定义域为R ,()1f x +是偶函数,当12x <时,()()ln 12f x x =-,则曲线()y f x =在点()()2,2f 处的切线斜率为()A.25B.25-C.2D.-27.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2223a b c =-,则tan tan AB=( )A.32B.12-C.23D.-28.已知F 是双曲线C :()222210,0x y a b a b -=>>的右焦点,直线y =与C 交于A ,B 两点.若ABF △的周长为7a ,则C 的离心率为( )A.43B.53C.65二、选择题:本题共3小题,每小题6分,共18分。
海南省海口市2024高三冲刺(高考数学)统编版(五四制)模拟(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,,则().A.B.C.D.第(2)题记集合,,则()A.B.C.D.第(3)题已知集合,集合,则()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题已知命题p:,,则命题p的否定为()A.,B.,C.,D.,第(6)题若,则()A.B.C.D.第(7)题命题“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则第(8)题某全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为h(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),若,则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题十六世纪中叶,英国数学家雷科德在《励智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,则下列说法不成立的是()A.若且,则B.若,则C.若,则D.若且,则第(2)题已知函数的定义域为,且为奇函数,为偶函数,则()A.4为的一个周期B.C.由可知,D.函数的所有零点之和为0第(3)题已知圆,下列说法正确的有( )A .对于,直线与圆都有两个公共点B.圆与动圆有四条公切线的充要条件是C .过直线上任意一点作圆的两条切线(为切点),则四边形的面积的最小值为4D .圆上存在三点到直线距离均为1三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题_____________.第(2)题在△ABC 中,,,将△ABC 沿AC 旋转,当点B 到达点的位置时,平面平面,则三棱锥外接球表面积为________.第(3)题设点是:上的动点,点是直线:上的动点,记,则的最小值是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,四棱锥中,底面为平行四边形,(1)证明:平面平面;(2)若在上,,求点到平面的距离.第(2)题已知等比数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.第(3)题已知数列的前项和是,且满足.(1)求数列的通项公式;(2)若,求数列由组成,求的前项和.第(4)题已知数列的前n项和为,.(1)证明:数列是等差数列;(2)若(1)中数列满足,,令,记,证明第(5)题如图,在平面四边形ABCD 中,对角线平分的内角A 、B 、C 的对边分别为a 、b 、c .已知.(1)求B ;(2)若,且________,求线段的长.从下面①②中任选一个,补充在上面的空格中进行求解.①△ABC的面积;②.。
海口市数学高三文数4月调研考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·石嘴山模拟) 设全集为实数集,,则为()A .B .C .D .2. (2分)设z=2i(1﹣ i),则z的虚部为()A . 2B . ﹣2C . 2iD . 23. (2分)给定下列两个命题:①“”为真是“”为假的必要不充分条件;②“,使”的否定是“,使”.其中说法正确的是()A . ①真②假B . ①假②真C . ①和②都为假D . ①和②都为真4. (2分)已知向量=(2,﹣3),=(x,6),且∥,则x的值为()A . 4B . -4C . 9D . -95. (2分) (2017高二上·宜昌期末) 如图,给出的是计算 + + +…+ 的值的程序框图,其中判断框内可填入的是()A . i≤2 021?B . i≤2 019?C . i≤2 017?D . i≤2 015?6. (2分) (2016高一下·周口期末) 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A .B .C .D .7. (2分) (2016高二下·红河开学考) 某几何体的三视图如图所示,则此几何体的体积等于()A . 30B . 12C . 24D . 48. (2分)若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则+=()A . 4B . 3C . 2D . 19. (2分)(2017·邯郸模拟) 将函数f(x)=cos2x图象向左平移φ(0<φ<)个单位后得到函数g (x)的图象,若函数g(x)在区间[﹣, ]上单调递减,且函数g(x)的最大负零点在区间(﹣,0)上,则φ的取值范围是()A . [ , ]B . [ ,)C . (, ]D . [ ,)10. (2分)△ABC的内角A、B、C的对边分别为a、b、c.若cosB= ,且c=2a,则()A . a、b、c成等差数列B . a、b、c成等比数列C . △ABC是直角三角形D . △ABC是等腰三角形11. (2分) (2017高二上·哈尔滨月考) 若双曲线-=1()的左、右焦点分别为,线段被抛物线的焦点分成的两段,则此双曲线的离心率为()A .B .C .D .12. (2分) (2018高一上·宁波期中) 给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即 .设函数,二次函数,若函数与的图象有且只有一个公共点,则的取值不可能是()A .B .C .D .二、填空题 (共4题;共6分)13. (2分)设函数①若,则的最小值为________ ;②若恰有2个零点,则实数的取值范围是 ________ .14. (2分)(2018·浙江) 若满足约束条件则的最小值是________,最大值是________.15. (1分) (2020高二下·泸县月考) 若曲线与直线始终有交点,则的取值范围是________.16. (1分) (2017高二下·寿光期末) 设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn ,则log2017x1+log2017x2+…+log2017x2016的值为________.三、解答题 (共7题;共65分)17. (10分) (2016高二上·方城开学考) 已知等差数列{an}的前n项和为Sn(n∈N*),a3=5,S10=100.(1)求数列{an}的通项公式;(2)设bn=2 +2n求数列{bn}的前n项和Tn .18. (5分)如图,圆柱的底面半径为,球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(Ⅰ) 计算圆柱的表面积;(Ⅱ)计算图中圆锥、球、圆柱的体积比.19. (15分) (2019高二上·张家口月考) 2019年“中秋节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度()分成七段后得到如图所示的频率分布直方图,据图解答下列问题:(1)求的值,并说明交警部门采用的是什么抽样方法?(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);(3)若该路段的车速达到或超过即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.20. (10分)(2014·山东理) 已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF 为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.21. (15分)已知定义在R上的奇函数f(x),当x>0时,f(x)=lnx﹣ax+1(a∈R).(1)求动点f(x)的解析式;(2)当a=1,求函数f(x)的单调区间;(3)若函数y=f(x)在R上恰好有5个零点,求实数a的取值范围.22. (5分)已知点P(a,0),直线l的参数方程是(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为ρ=2cosθ.(Ⅰ)求直线l的普通方程和曲线C的普通方程;(Ⅱ)已知a>1,若直线l与曲线C交于两点A,B,且|PA|•|PB|=1,求实数a的值.23. (5分)(2017·绵阳模拟) 已知函数f(x)=|2x+ |+a|x﹣ |.(Ⅰ)当a=﹣1时,解不等式f(x)≤3x;(Ⅱ)当a=2时,若关于x的不等式2f(x)+1<|1﹣b|的解集为空集,求实数b的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、23-1、。
高考数学模拟一、选择题(本大题共12小题,共60.0分)1.设集合A={x|-2<x≤4},B={x|x>-1},则()A. A∩B={x|-2<x≤-1}B. A∪B={x|x>-2}C. A∩B={x|-1<x<4}D. A∪B={x|x>-1}2.若复数z满足=1+2i,则z=()A. 1+3iB. 3+iC. 3+3iD. -1+3i3.某地区的高一新生中,来自东部平原地区的学生有2400人,中部丘陵地区的学生有1600人,西部山区的学生有1000人.计划从中选取100人调查学生的视力情况,现已了解到来自东部、中部、西部三个地区学生的视力情况有较大差异,而这三个地区男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是() .A. 简单随机抽样B. 按性别分层抽样C. 系统抽样D. 按地区分层抽样4.在长方体ABCD﹣A1B1C1D1中,AB=AD=,AA1=2,则异面直线AB1与BC1所成角的余弦值为().A. B. C. D.5.已知点M为双曲线C:x2=1的左支上一点,F1,F2分别为C的左、右焦点,则|MF1|+|F1F2|-|MF2|=()A. 1B. 4C. 6D. 86.设x,x+10,x-5是等比数列{a n}的前三项,则a n=()A. -4×(-)n-1B. -4×(-)nC. ×(-)n-1D. -4×()n-17.下列不等式正确的是()A. B.C. D.8.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232 321 230 023 123 021 132 220 011 203 331 100231 130 133 231 031 320 122 103 233 221 020 132由此可以估计,恰好第三次就停止的概率为()A. B. C. D.9.已知函数f(x)在[3,+∞)上单调递减,且f(x+3)是偶函数,则a=f(0.31.1),b=f(30.5),c=f(0)的大小关系是()A. a>b>cB. b>c>aC. c>b>aD. b>a>c10.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中的酒量”,即输出值是输入值的,则输入的x=()A.B.C.D.11.某高为4的三棱柱被一个平面截去一部分后得到一个几何体,它的三视图如图所示,则该几何体的体积与原三棱柱的体积之比是()A. B. C. D.12.已知函数f(x)的导函数f′(x)满足f(x)+(x+1)f′(x)>0对x∈R恒成立,则下列判断一定正确的是()A. 0<f(0)<2f(1)B. f(0)<0<2f(1)C. 0<2f(1)<f(0)D. 2f(1)<0<f(0)二、填空题(本大题共4小题,共20.0分)13.已知向量,的夹角为60°,且满足•=24,||=6,则||=______.14.将函数f(x)=sin(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,则g(x)的最小正周期是______.15.若抛物线y2=8x上一点P(m,n)到其焦点的距离为8m,则m=______.16.设数列{a n}的通项公式为a n=2n,S n为其前n项和,则数列{}的前9项和T9=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,3sin A=2sin B,.(1)求cos2C;(2)若AC-BC=1,求△ABC的周长.18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求三棱锥B1-AEF的体积.19.某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是后面4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”;(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?附:对于一组数据(x1,y1),(x2,y2),……,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为:==,=.20.已知直线l1:y=kx+2与椭圆C:=1交于A,B两点,l1与直线l2:x+2y-4=0交于点M(1)证明:l2与C相切;(2)设线段AB的中点为N,且|AB|=|MN|,求l1的方程.21.已知函数f(x)=2x3-(6a+3)x2+12ax+16a2(a∈R).(1)若a=-1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若f(x)只有一个零点x0,且x0<0,求a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l:y=kx(x≥0)与曲线C交于A,B两点.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)求的最大值.23.已知函数f(x)=|x+2|+2|x-1|.(1)求f(x)的最小值;(2)若不等式f(x)+x-a<0的解集为(m,n),且n-m=6,求a的值.答案和解析1.【答案】B【解析】解:∵A={x|-2<x≤4},B={x|x>-1},∴A∩B={x|-1<x≤4},A∪B={x|x>-2}.故选:B.进行交集和并集的运算即可.考查描述法的定义,以及交集、并集的运算.2.【答案】D【解析】解:由=1+2i,得z=(1+2i)(1+i)=-1+3i.故选:D.把已知等式变形,利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.3.【答案】D【解析】【分析】本题主要考查抽样方法,熟记每种抽样方法的特征即可,属于基础题型.根据抽样方法的特征,即可得出结论.【解答】解:由于该地区东部、中部、西部三个地区学生的视力情况有较大差异,故按地区分层抽样.故选:D.4.【答案】A【解析】解:连接AD1,因为AD1∥BC1,所以∠B1AD1为异面直线AB1与BC1所成的角,又AB=AD=,AA1=2,所以AD1=AB1=,D1B1=2,在△B1AD1中,由余弦定理可得:cos∠B1AD1==,即异面直线AB1与BC1所成角的余弦值为,故选:A.先由异面直线所成角的作法可得:∠B1AD1为异面直线AB1与BC1所成的角,再结合余弦定理求出异面直线所成角的余弦值即可得解.本题考查了异面直线所成角的作法及求法,属中档题.5.【答案】B【解析】【分析】本题考查双曲线的简单性质以及双曲线的定义的应用,考查计算能力,属于中档题.利用双曲线方程,通过双曲线的定义,转化求解即可.【解答】解:双曲线C:x2=1,可得a=1,b=2,c=3,则点M为双曲线C:x2=1的左支上一点,F1,F2分别为C的左、右焦点,则|MF1|+|F1F2|-|MF2|=-2a+2c=4.故选B.6.【答案】A【解析】解:x,x+10,x-5是等比数列{a n}的前三项,∴x(x-5)=(x+10)2,解得x=-4,x+10=6,∴公比q=-,因此a n=-4×.故选:A.利用等比数列的通项公式即可得出.本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.7.【答案】D【解析】【分析】本题考查三角函数值以及对数比较大小的问题,熟记三角函数与对数函数的性质即可,属于基础题.根据,,,用排除法即可得出结果.【解答】解:∵,,,∴排除A,B,C,>log52,故选:D.8.【答案】A【解析】解:由题意可知,满足条件的随机数组中,前两次抽取的数中含0与1不能同时出现,出现0就不能出现1,反之亦然,第三次必须出现前面两个数字中没有出现的1或0,即符合条件的数组只有3组:021,130,031,故由此可以估计,恰好第三次就停止的概率为P==.故选:A.满足条件的随机数组中,前两次抽取的数中含0与1不能同时出现,出现0就不能出现1,反之亦然,第三次必须出现前面两个数字中没有出现的1或0,由此可以估计,恰好第三次就停止的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是中档题.9.【答案】D【解析】【分析】本题主要考查偶函数的对称性及函数的图象的平移及利用函数的单调性比较函数值的大小,属于中档题.f(x+3)是偶函数图象关于y轴对称,结合函数的图象的平移及函数的单调性即可比较大小.【解答】解:∵f(x+3)是偶函数图象关于y轴对称,∴f(x)的图象关于x=3对称,由f(x)在[3,+∞)上单调递减可知,f(x)在(-∞,3)上单调递增,∵3>30.5>0.31.1>0,∴b>a>c.故选:D.10.【答案】C【解析】【分析】根据程序框图进行模拟运算即可.本题考查程序框图的知识,考查运算求解能力,利用模拟运算法是解决本题的关键.【解答】解:i=1时.x=2x-1,i=2时,x=2(2x-1)-1=4x-3,i=3时,x=2(4x-3)-1=8x-7,i=4时,退出循环,此时8x-7=x解得x=,故选:C.11.【答案】B【解析】【分析】本题主要考查几何体的三视图以及几何体的体积,熟记公式即可,属于常考题型.先由三视图确定该几何体是四棱锥,结合题中熟记,求出体积,再求出原三棱柱的体积,即可得出结果.【解答】解:由侧视图、俯视图知该几何体是高为2且底面积为=5的四棱锥,其体积为.又三棱柱的体积为×2×2×4=8,故体积比为:.故选:B.12.【答案】A【解析】【分析】本题考查函数的导数的应用,函数的单调性与导数的关系,考查转化思想以及计算能力,属于中档题.利用函数的导数,判断导函数的符号,推出函数的单调性,化简求解即可.【解答】解:设F(x)=(x+1)f(x),则F′(x)=(x+1)f′(x)+f(x)>0,∴F(x在R上递增,∴F(-1)<F(0)<F(1),即0<f(0)<2f(1),故选:A.13.【答案】8【解析】解:向量,的夹角为60°,且满足•=24,||=6,则6||cos60°=24,解得||=8.故答案为:8.直接利用向量的数量积,结合向量的夹角,转化求解即可.本题考查向量的数量积公式的应用,考查计算能力.14.【答案】π【解析】【分析】本题主要考查三角函数的图象变换问题以及函数的周期,熟记三角函数的性质即可,属于常考题型.先由图象的变化得到g(x)的解析式,再由正弦函数的周期性即可求出函数的最小正周期.【解答】解:将函数f(x)=sin(4x-)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)=sin(2x-)的图象,则g(x)的最小正周期是=π,故答案为π.15.【答案】【解析】解:∵抛物线y2=8x上一点P(m,n),F为抛物线的焦点,|PF|=8m,∴m+2=8m,解得:m=,故答案为:.根据抛物线上的点到焦点和准线的距离相等,列出方程,可得m值.本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.16.【答案】【解析】解:因为a n=2n,所以S n=n(2+2n)=n(n+1).因为==-,所以T9=-+-+…+-=-=-=.故答案为:.由等差数列的求和公式可得S n,求得==-,由裂项相消求和,化简整理可得所求和.本题考查等差数列的求和公式和数列的裂项相消求和,化简整理的运算能力,属于中档题.17.【答案】解:(1)∵,∴cos2C==,∴cos2C=2cos2C-1=2×-1=-.(2)∵3sin A=2sin B,∴由正弦定理可得:3a=2b,又∵AC-BC=1,即:b-a=1,∴解得:a=2,b=3,∵由(1)可得:cos C=,∴由余弦定理可得:c===,∴△ABC的周长a+b+c=5+.【解析】(1)由已知利用同角三角函数基本关系式可求cos2C=的值,根据二倍角的余弦函数公式即可计算得解.(2)由正弦定理可得:3a=2b,结合b-a=1,即可解得a,b的值,由(1)可得cos C=,利用余弦定理可求c的值,即可得解△ABC的周长.本题主要考查了同角三角函数基本关系式,二倍角的余弦函数公式,正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.【答案】(1)证明:如图,连接BC1.在三棱柱ABC-A1B1C1中,E为AC1的中点.又因为F为AB的中点,所以EF∥BC1.又EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.(或先证面面平行,再证线面平行,也是常见的方法)(2)解:因为AC⊥AB,AA1⊥AC,AA1∩AB=A,AA1、AB平面ABB1A1,所以AC⊥平面ABB1A1,又AC=4,E为A1C的中点,所以E到平面ABB1A1的距离为:×4=2.因为△AB1F的面积为:×2×6=6,所以==×2×6=4.【解析】(1)连接BC1.证明EF∥BC1,然后证明EF∥平面BCC1B1.(2)求证AC⊥平面ABB1A1,求出E到平面ABB1A1的距离,通过=求解体积即可.本题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.19.【答案】解:(1)由后面四组数据求得,,,,∴=,.∴.当x=10时,,而23.6-23=0.6<1;当x=11时,,而25-25=0<1.∴求出的线性回归方程是“恰当回归方程”;(2)由1.4x+9.6≤35,得x.故间隔时间最多可设置为18分钟.【解析】(1)由后四组数据求得及的值,可得线性回归方程,分别取x=10,11求得y值,与原表格中对应的y值作差判断;(2)直接由1.4x+9.6≤35,求得x值得答案.本题考查线性回归方程的求法,考查计算能力,是中档题.20.【答案】(1)证明:由题意,可将直线l2与椭圆C联立方程,得:消去x,整理得:y2-2y+1=0.∵△=4-4×1×1=0,∴直线l2与椭圆C相切.(2)解:由题意,联立直线l1与直线l2的方程,得:,解得:.∴M点的坐标为(0,2).由题意,再联立直线l1与椭圆C的方程,得:.消去y,整理得:(4k2+1)x2+16kx+8=0,∵直线l1与椭圆交于A,B两点,∴△=(16k)2-32(4k2+1)=128k2-32>0,解得:k2>.由题意,可设A(x1,y1),B(x2,y2),N(x0,y0),则x1+x2=-,x1x2=,∴x0==-.∵|AB|=|MN|,即,∴,即,解得k2=,满足k2>.∴k=±,∴直线l1的方程为y=±.【解析】(1)将直线和椭圆的方程联立消元后根据所得方程的判别式为0可证得结论成立;(2)由|AB|=|MN|,并结合弦长公式可得关于k的方程,解方程可得k的值,进而得到所求直线方程.本题体现了代数方法在解决解析几何问题中的应用,通过代数运算达到解决位置关系和数量关系的目的.由于在解题中会遇到大量的计算,所以在解题中要注意“设而不求”、“整体代换”等方法的运用,以达到简化运算的目的.21.【答案】解:(1)f(x)=2x3+3x2-12x+16的导数为f′(x)=6x2+6x-12,可得曲线y=f(x)在点(2,f(2))处的切线斜率为24,切点为(2,20),则曲线y=f(x)在点(2,f(2))处的切线方程为y-20=24(x-2),即为y=24x-28;(2)f(x)=2x3-(6a+3)x2+12ax+16a2的导数为f′(x)=6x2-2(6a+3)x+12a=6(x-1)(x-2a),①当2a<1即a<,x>1或x<2a时,f′(x)>0,f(x)递增;当2a<x<1时,f′(x)<0,f(x)递减,可得f(x)的极小值f(1)=16a2+6a-1,由x0<0,f(0)>0,f(1)>0,解得a<-或<a<;②当2a=1即a=时,f′(x)0恒成立,f(x)递增,由f(0)=16a2=4>0,f(x)只有一个零点,可得a=成立;③当2a>1即a>,x>2a或x<1时,f′(x)>0,f(x)递增;当1<x<2a时,f′(x)<0,f(x)递减,可得f(x)的极小值f(2a)=a2(28-8a),由x0<0,f(0)>0,f(2a)>0,解得<a<.综上可得a的范围是(-∞,-)∪(,).【解析】(1)求得a=-1时f(x)的解析式,求得f(x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线方程;(2)求得f(x)的导数,求得导数为0的解1,2a,讨论2a<1,2a=1或2a>1,求得f(x)的单调性可得极小值,可令极小值大于0,解不等式即可得到所求范围.本题考查导数的运用:求切线方程和单调性、极值,考查分类讨论思想和化简运算能力,属于中档题.22.【答案】解:(1)由(θ为参数),得(x-3)2+y2=4,即x2+y2-6x+5=0.故C的极坐标方程为ρ2-6ρcosθ+5=0.(2)设A(ρ1,α),B(ρ2,α),直线l:y=kx(k≥0)的极坐标方程为θ=α(ρ∈R),代入ρ2-6ρcosθ+5=0,得ρ2-6ρcosα+5=0,所以ρ1+ρ2=6cosα,ρ1ρ2=5.因为k≥0,所以cosα>0,则ρ1>0,ρ2>0,则+=+==.当cosα=1时,+取得最大值,且最大值为.【解析】本题主要考查参数方程与普通方程的互化、以及直角坐标方程与极坐标方程的互化,熟记公式即可,属中档题.(1)先由参数方程得到普通方程,再由普通方程即可得到极坐标方程;(2)先设A(ρ1,α),B(ρ2,α),以及直线l的极坐标方程为θ=α(ρ∈R),代入(1)中的结果,得到ρ2-6ρcosα+5=0,由韦达定理,以及+=+,即可求出结果.23.【答案】解:(1)f(x)=|x+2|+2|x-1|=,则f(x)在(-∞,1]上单调递减,在(1,∞)上单调递增,所以f(x)min=f(1)=3.(2)因为g(x)=f(x)+x-a=,令-2x-a<0,则x;令4x-a<0,则x<,所以不等式f(x)+x-a<0的解集为(-,),又不等式f(x)+x-a<0的解集为(m,n),且n-m=6,所以-(-)=6,故a=8.【解析】本题主要考查含绝对值不等式,熟记不等式的解法即可,属中档题.(1)先将函数f(x)写出分段函数的形式,再根据每一段的单调性,确定函数f(x)的单调性,即可得出结果;(2)先将函数g(x)写出分段函数的形式,根据函数g(x)单调性,分别由-2x-a<0和4x-a<0,求出不等式f(x)+x-a<0的解集,在由题中条件即可得出结果.。