(秋)八年级数学上册 12.3.1 角的平分线的性质说课稿 (新版)新人教版
- 格式:doc
- 大小:185.00 KB
- 文档页数:4
八年级数学上册12.3 角的平分线的性质第1课时角的平分线的性质教案(新版)新人教版一. 教材分析《角的平分线的性质》是八年级数学上册12.3节的内容,本节课的主要内容是让学生掌握角的平分线的性质,并能够运用角的平分线解决一些简单的几何问题。
在教材中,已经给出了角的平分线的性质的定义和证明,学生在学习本节课之前,已经掌握了角的概念、角的大小比较、角的平分线定义等知识。
二. 学情分析八年级的学生已经具备了一定的几何知识,对于角的概念、角的大小比较等知识有一定的了解。
但是,对于角的平分线的性质,学生可能还没有听说过,因此,教师需要通过导入环节,激发学生的学习兴趣,引导学生主动探索角的平分线的性质。
三. 教学目标1.了解角的平分线的性质,并能够运用角的平分线解决一些简单的几何问题。
2.培养学生的观察能力、推理能力、动手能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.角的平分线的性质的证明。
2.运用角的平分线解决几何问题。
五. 教学方法1.引导探究法:教师引导学生通过观察、推理、动手操作等方法,探索角的平分线的性质。
2.案例分析法:教师通过给出一些具体的几何问题,让学生运用角的平分线进行解决。
3.小组合作法:教师学生进行小组合作,共同探讨角的平分线的性质,并解决一些几何问题。
六. 教学准备1.教学PPT:教师需要准备角的平分线的性质的教学PPT,包括角的平分线的性质的定义、证明、应用等内容。
2.几何图形:教师需要准备一些几何图形,用于引导学生观察、推理。
3.练习题:教师需要准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾角的概念、角的大小比较等知识,然后引入角的平分线的概念,并提问:角的平分线有什么性质呢?2.呈现(15分钟)教师通过PPT呈现角的平分线的性质的定义和证明,让学生观察并理解角的平分线的性质。
3.操练(10分钟)教师给出一些几何图形,让学生运用角的平分线的性质进行判断和解决。
八年级数学上册 12.3 角的平分线的性质第2课时角的平分线的判定说课稿(新版)新人教版一. 教材分析角的平分线的性质是八年级数学上册第12.3节的内容,这部分内容是初中数学中几何知识的重要组成部分,也是学生进一步学习高中数学的基础。
角的平分线不仅巩固了学生对角的知识,而且引出了线段垂直平分线的概念,为后续学习提供了铺垫。
二. 学情分析八年级的学生已经掌握了角的概念,平行线,垂线的性质等基础知识,具备了一定的逻辑思维能力和空间想象力。
但是,对于角的平分线的性质和判定,可能还存在一定的困难,需要通过实例和练习来进一步理解和掌握。
三. 说教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线解决一些几何问题。
2.过程与方法:通过观察,实验,推理等方法,引导学生发现角的平分线的性质,培养学生的观察能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作精神和探索精神。
四. 说教学重难点1.教学重点:角的平分线的性质。
2.教学难点:角的平分线的判定。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生自主探究,合作交流,发现和总结角的平分线的性质。
2.教学手段:利用多媒体课件,展示角的平分线的性质和判定,通过几何画板软件,让学生直观地观察和理解角的平分线的性质。
六. 说教学过程1.导入:通过复习角的概念,平行线,垂线的性质,引出角的平分线。
2.新课导入:利用多媒体课件,展示角的平分线的性质,引导学生观察,思考,发现角的平分线的性质。
3.性质探究:引导学生通过实验,观察,推理,总结角的平分线的性质。
4.判定讲解:讲解角的平分线的判定方法,并通过实例进行说明。
5.练习巩固:布置一些练习题,让学生运用角的平分线的性质和判定解决实际问题。
6.课堂小结:回顾本节课所学内容,总结角的平分线的性质和判定。
七. 说板书设计角的平分线性质:1.角的平分线上的点到角的两边的距离相等。
人教版八年级数学上册12.3.1《角的平分线的性质(1)》说课稿一. 教材分析《角的平分线的性质(1)》是人教版八年级数学上册第12.3节的一部分,这部分内容主要介绍了角的平分线的性质。
在本节课中,学生将学习到角的平分线上的点到角的两边的距离相等,以及角的平分线与角的对边相交,交点将对边分成两段相等的线段。
这部分内容是学生进一步理解角的概念,以及运用角的性质解决实际问题的基础。
二. 学情分析在八年级的学生已经有了一定的数学基础,他们已经学习了角的概念,线段的概念,以及一些基本的几何性质。
但是,对于角的平分线的性质,他们可能还没有完全理解,需要通过实例和练习来进一步掌握。
同时,学生可能对于如何运用角的平分线的性质来解决实际问题还不够熟练,需要通过练习和应用来提高。
三. 说教学目标本节课的教学目标是让学生理解角的平分线的性质,能够运用角的平分线的性质解决实际问题,提高他们的数学思维能力和解决问题的能力。
四. 说教学重难点本节课的重点是让学生理解角的平分线的性质,能够运用角的平分线的性质解决实际问题。
难点是对于角的平分线的性质的理解和运用,特别是如何运用角的平分线的性质来解决实际问题。
五. 说教学方法与手段在本节课中,我将采用讲授法和实践法相结合的教学方法。
首先,我会通过讲解和示例来引导学生理解角的平分线的性质。
然后,我会学生进行实践操作,通过实际操作来加深对角的平分线的性质的理解。
同时,我还会学生进行讨论和交流,通过讨论和交流来提高他们的数学思维能力和解决问题的能力。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考角的平分线的性质。
2.讲解:讲解角的平分线的性质,通过示例来说明角的平分线上的点到角的两边的距离相等,角的平分线与角的对边相交,交点将对边分成两段相等的线段。
3.实践:学生进行实践操作,通过实际操作来加深对角的平分线的性质的理解。
4.讨论:学生进行讨论和交流,通过讨论和交流来提高他们的数学思维能力和解决问题的能力。
角平分线的性质说课稿徐庄中学八年级张玉芳今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节.下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计和教学评价分析等五个方面对我的教学设计加以说明.一、教学背景的分析1.教学内容分析本节内容是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理 1正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.二、教学目标的确定1、知识与技能:(1).会用尺规作一个角的平分线,知道作法的合理性.(2).探索并证明角的平分线的性质.(3).能用角的平分线的性质解决简单问题.2.过程与方法:在经历角平分线的性质定理的推导过程中,提高综合运用三角形的有关知识解决问题的能力,并初步了解角的平分线的性质在生活、生产中的应用。
12.3 角的平分线的性质教学目标知识与技能1.能够利用三角形全等,证明角平分线的性质和判定。
2.会用尺规作已知角的平分线。
3.能利用角平分线性质实行简单的推理,解决一些实际问题。
经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和水平。
情感态度价值观在探讨作角的平分线的方法及角的平分线的性质的过程中,激发学习兴趣,引发思考,培养学生的创新精神和探究水平,增强解决问题的信心。
教学重点角平分线性质的探究、证明、使用。
教学难点角的平分线的性质的探究教学准备平分角的仪器(自制)三角尺、多媒体课件等.教学过程教学内容设计理念创设情境,导入新课1.在纸上任意画一个角,用剪刀剪下,用折纸的方法,如何确定角的平分线?2.有一个简易平分角的仪器(展示自制教具),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?复习旧知识,回忆角的平分线的定义。
让学生体验利用证明三角形全等的方法来对画法做出说明。
要求学生能说明所作的射线是角平分线的理由。
探索新知,建立模型探究1:探究作已知角的平分线的方法(1)从上面对平分角的仪器的探究中,能够得出作已知角的平分线的方法。
已知什么?求作什么?【已知:∠AOB求作:∠AOB的平分线】(2)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N。
从实验中抽象出几何模型,明确几何作图的基本思路和方法。
(3)分别以点M ,N 为圆心,大于二分之一MN 长为半径画弧,两弧在角的内部交于点C 。
(4)作射线OC 。
(5)你能说明OC 是∠AOB 的平分线吗? 【提示:利用全等的性质】探究2:探究角平分线的性质(2)将∠AOB 对折,在折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(3)在已画好的角的平分线OC 上任意找一点P,过P 点分别作OA 、OB 的垂线交OA 、OB 于M 、N, PM 、PN 的长度是∠AOB 的平分线上一点到∠AOB 两边的距离。
八年级数学上册 12.3 角的平分线的性质第1课时角的平分线的性质教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.3节讲述了角的平分线的性质。
这部分内容是在学生已经掌握了角的概念、角的计算、线段的性质等基础知识的基础上进行讲解的。
角的平分线的性质是数学中的重要概念,对于学生理解和应用角的概念有重要意义。
本节课的内容包括角的平分线的定义、角的平分线的性质及其应用。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于角的概念和线段的性质有一定的了解。
但是,对于角的平分线的性质及其应用可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、探究来理解角的平分线的性质,并能够运用角的平分线解决实际问题。
三. 教学目标1.知识与技能:使学生理解角的平分线的性质,能够运用角的平分线解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:角的平分线的性质的应用。
五. 教学方法采用问题驱动法、合作探究法、讲解法等教学方法。
通过问题引导学生思考,合作探究来理解角的平分线的性质,讲解法来讲解角的平分线的性质及其应用。
六. 教学准备1.准备相关的教学材料,如PPT、黑板、粉笔等。
2.准备一些实际问题,用于引导学生运用角的平分线解决实际问题。
七. 教学过程1.导入(5分钟)通过复习角的概念、角的计算、线段的性质等基础知识,引导学生进入新的学习内容。
2.呈现(10分钟)讲解角的平分线的定义,角的平分线的性质。
通过PPT展示角的平分线的性质的图示和解释,让学生直观地理解角的平分线的性质。
3.操练(10分钟)讲解角的平分线的性质的应用。
通过一些实际问题,引导学生运用角的平分线解决实际问题。
让学生在解决问题的过程中,加深对角的平分线的性质的理解。
角的平分线的性质尊敬的各位老师,大家好!今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节。
下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计等四个方面对我的教学设计加以说明。
一、教学背景的分析1、教学内容分析本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
4、教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
二、教学目标的确定1、知识与技能:(1)掌握用尺规作已知角的平分线的方法。
角的平分线的性质尊敬的各位老师,大家好!今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节。
下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计等四个方面对我的教学设计加以说明。
一、教学背景的分析1、教学内容分析本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
4、教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
二、教学目标的确定1、知识与技能:(1)掌握用尺规作已知角的平分线的方法。
(2)理解角的平分线的性质并能初步运用。
2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
3、解决问题:(1)初步了解角的平分线的性质在生产、生活中的应用。
(2)培养学生的数学建模能力。
4、情感与态度:充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。
三、教学方法与手段的选择1、教学方法:本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”。
鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合。
2、教学手段:根据本节课的实际教学需要,我选择电脑及投影仪多媒体教学系统教学,另外借助一定的教学软件,如“几何画板”,“Powerpoint ”等将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变。
这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。
四、教学过程的设计一、创设情景生活中的数学问题:小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。
问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看一看。
利用多媒体渲染气氛,激发情感。
教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。
学生动手画图,猜测并说出观察到的结论。
引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题。
[设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备。
二、探究体验要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。
出示仪器模型,介绍仪器特点(有两对边相等),将A 点放在角的顶点处,AB 和AD 沿角的两边放下,过AC 画一条射线AE ,AE 即为∠BAD 的平分线。
学生口述,用三角形全等的方法证明AE 是∠BAD 的平分线。
多媒体展示实验过程。
[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。
从上面的探究中可以得到作已知角的平分线的方法。
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC =DC ,从几何作图角度怎么画?教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平线的过程。
[设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳。
教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性。
利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程。
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,A D BC EAF C D B E折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。
问题1:第一次的折痕和角有什么关系?为什么?问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?学生动手剪纸,折叠,教师在多媒体上演示折叠过程。
学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等。
[设计意图]培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫。
如图:按照折纸的顺序画出角及折纸形成的三条折痕。
让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质。
(角的平分线上的点到角两边的距离相等) 利用多媒体直观优势,突破教学难点。
结合图形写出已知,求证,分析后写出证明过程。
教师归纳,强调定理的条件和作用。
教师用文字语言叙述得到的结论。
引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示。
证明后,教师强调经过证明正确的命题可作为定理。
同时强调文字命题的证明步骤。
[设计意图]经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而更利于学生的直观体验上升到理性思维。
三、合作交流判断正误,并说明理由:(1)如图1,P 在射线OC 上,PE ⊥OA ,PF ⊥OB ,则PE =PF 。
(2)如图2,P 是∠AOB 的平分线OC 上的一点,E 、F 分别在OA 、OB 上,则PE =PF 。
(3)如图3,在∠AOB 的平分线OC 上任取一点P ,若P 到OA 的距离为3cm ,则P 到OB 的距离边为3cm 。
用多媒体展示判断题 ,学生独立思考完成,并请学生举手发表见解,教师予以肯定、鼓励。
[设计意图]让学生通过辨析来理解和巩固角平分线的性质定理。
让学生运用本节课所学的知识回答课前引例中的问题:问题:引例中两条管道的长度有什么关系?理由是什么?再次展示引例情景,用抢答的形式请同学们举手回答。
[设计意图]运用所学性质回答课前引例中的问题,让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学。
同时利用抢答形式更好活跃课堂气氛。
四、例题讲解例1 如图,在△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F 。
求证:EB =F C 。
O B A O B P E F 图2 图3 A O B P E A O B P E F 图1变题1:如图,△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,且BD =DF ,求证:CF =EB 。
变题2:,△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,BC =8,BD =5,求DE 。
多媒体的运用,促进了课堂教学方法与模式的变革。
教师用多媒体展示问题,学生观察识图,独立思考,并且在小组内讨论交流,找出证明思路,再鼓励学生通过实物投影展示自己的证明过程,教师点评一题多变及一题多解。
[设计意图]本组例题的解决是为突出重点、突破难点而设计的一项活动。
让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形。
同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力。
两道变题同时展示,符合高效课堂要求。
通过学生观察识图、独立思考、小组讨论,培养学生合作交流的意识。
五、课堂小结这节课你本节课学习了哪些知识?学会了什么方法? 教师让学生畅谈本节课的收获与体会。
学生归纳、梳理交流本节课所获得的知识技能与情感体验。
[设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力。
六、作业教材第51页第2、3题。
教师布置作业,学生独立完成。
七、板书设计:以上是我的全部说课内容,恳请各位老师批评指正,谢谢。
A F C DB E。