人教版八年级数学上册《角的平分线的性质》
- 格式:doc
- 大小:141.00 KB
- 文档页数:5
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
角的平分线的性质
教学目标 知识与技能:
1、掌握用尺规作已知角的平分线的方法;
2、理解角的平分线的性质并能初步运用。
过程与方法:
通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。
教学重点:
掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点:
1、对角平分线性质定理中点到角两边的距离的正确理解;
2、对于性质定理的运用。
教学过程: 一、创设情景
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看。
二、探究体验
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。
出示仪器模型,介绍仪器特点(有两对边相等),将A 点放在角的顶点处,AB 和AD 沿角的两边放下,过AC
画一条射线
A
F C
B
E AE ,AE 即为∠BAD 的平分线。
学生口述,用三角形全等的方法证明AE 是∠BAD 的平分线。
多媒体展示实验过程。
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC =DC ,从几何作图角度怎么画?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
三、合作交流
判断正误,并说明理由:
(1)如图1,P 在射线OC 上,PE ⊥OA ,PF ⊥OB ,则PE =PF .
(2)如图2,P 是∠AOB 的平分线OC 上的一点,E 、F 分别在OA 、OB 上,则
PE =PF .
(3)如图3,在∠AOB 的平分线OC 上任取一点P ,若P 到OA 的距离为3cm ,则P 到OB 的距离边为3cm .
让学生运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么? 四、例题讲解
例1 如图,在△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .求证:EB =FC
.
E
O
B
A
O
B
P E
F
图2 图3
A
O
B
P E
A
O
B
P E
F
图1。