八年级数学图形的位似
- 格式:pdf
- 大小:831.41 KB
- 文档页数:8
第五节 位似图形要点精讲(1)位似图形的定义:如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似图形,这个点叫做位似中心。
(2)位似图形的性质:如果两图形F 与是位似图形,它们的位似中心是点O ,相似比为k ,那么:①设A 与是一双对应点,则直线过位似中心O 点,并且.②设A 与,B 与是任意两双对应点,则;若直线AB 、不通过位似中心O ,则.(3)位似图形是相似图形的一种特殊情况,利用位似,可以将一个图形放大或缩小。
(4)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或。
典型例题【例1】如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【答案】解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)【解析】未似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.【例1】 把下图中的四边形ABCD 缩小到原来的21.【答案】(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如下图。
【解析】:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .。
《图形的位似》教学设计及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,所以是本节教学的难点。
教学内容 4.6 图形的位似教学过程:一.创设情景,构建新知1.位似图形的概念下列两幅图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?(像一种什么镜头)图片的形状相同,而且每组对应顶点都在由同一点出发的一条射线上.如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.例如上图中的任何两个五角星都是位似图形,点O是它们的位似中心;放电影时,胶片与屏幕的画面也是位似图形,光源就是它们的位似中心.2.引导学生观察位似图形下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,并判断哪些是位似图形,哪些不是位似图形?为什么?每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点。
所以都是位似图形。
各对应点所在的直线都经过同一点的相似图形是位似图形。
其相似比又叫做它们的位似比.显然,位似图形是相似图形的特殊情形。
3.练一练:判断下列各对图形哪些是位似图形,哪些不是. (1)五边形ABCDE 与五边形A ′B ′C ′D ′E ′;ABCDE O A ′B ′C ′D ′E ′ABCDEO A ′D ′E ′(2)在平行四边形ABCD中,△ABO与△CDO(3)正方形ABCD与正方形A′B′C′D′.(4)等边三角形ABC与等边三角形A′B′C′(5)反比例函数y=6 x(x>0)的图像与y=6x(x<0)的图像A BCDOA BCDA′B′C′D′ABCOA′B′C′(6)曲边三角形ABC 与曲边三角形A ′B ′C ′(7)扇形ABC 与扇形A ′B ′C ′,(B 、A 、B ′在一条直线上,C 、A 、C ′在一条直线上)A BCB ′C ′ABC B ′C ′ADE(8)△ABC 与△ADE (①DE ∥BC ; ②∠AED =∠B )通过上面几个练习,使学生明白:图形相似;对应顶点的连线经过同一点,是判断位似图形两个不可缺少的条件。