浙教版九年级数学上册《图形的位似》教案
- 格式:doc
- 大小:3.43 MB
- 文档页数:6
浙教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!浙教版初中数学和你一起共同进步学业有成!《4.7 图形的位似》教案【教学目标】1.通过“观察——操作——思考”的活动过程,认识位似图形。
2.会利用位似的性质将一个图形放大或者缩小。
【教学重点】掌握位似图形的性质,利用位似图原理将一个图形放大或缩小。
【教学难点】利用位似图原理将一个图形放大或缩小。
1.“两边成比例且夹角相等的两个三角形相似”的判定方法的证明; 2.能恰当地运用判定方法判定三角形是否相似【活动一】探索位似图形的定义1.操作:(1)如图,已知点O 和△ABC .分别在OA 、OB 、OC 的反向延长线上取点A′、B′、C′,使。
画△A′B′C′。
观察:通过刚才的操作,你发现12OA OB OC OA OB OC '''===了什么?2.已知已知点O 和四边形ABCD ,分别在线段OA 、OB 、OC 、OD 上取点A′、B′、C′D′,使,画四边形A ′B ′C ′D ′。
观察:通过刚才的操作,21='='='='OD D O OC C O OB B O OAA O 你发现了什么?。
位似形多边形:如果两个多边形不仅相似,而且对应顶点所在直线相交于一点,那么这两个多边形叫做位似形,这个点叫做位似中心。
利用位似可以按所给相似比把一个图形放大或缩小。
【活动二】探索位似形的性质1.上述图形中,△ABC与△A′B′C′是位似形,这两个三角形相似吗?它们的对应边有怎样的位置关系?为什么?2.上述图形中,四边形ABCD与四边形A′B′C′D′是位似形,这两个四边形相似吗?它们的对应边有怎样的位置关系?为什么?性质:(1)两个位似形一定是相似形,相似形不一定是位似形;(2)各对对应点所在的直线都经过同一点;(3)位似形的对应线段所在直线平行或经过位似中心;(4)各对对应顶点到位似中心的距离之比等于相似比。
4.7 图形的位似一、教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.二、重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.三、课堂引入1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.归纳总结:请同学们阅读课本,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形....,这个交点叫做位似中心....,这时两个相似图形的相似比又叫做它们的位似比...。
3.如图,O是四边形ABCD所在平面内任意一点.连结OA,OB,OC,OD,分别在OA,OB,OC,OD上截取OA′,OB′,OC′,OD′,使得OA′OA =OB′OB=OC′OC=OD′OD=12,连接A′B′,B′C′,C′D′,D′A′.四、例题讲解例1如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【解析】位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2把图1中的四边形ABCD 缩小到原来的21.【解析】把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.例3 如图,请以坐标原点O 为位似中心,作平行四边形ABCD 的位似图形,并把平行四边形ABCD 的边长放大3倍.【解析】把平行四边形ABCD 的边长放大3倍,即画一个与平行四边形ABCD 的位似比为3:1的平行四边形.作法:1.连结OA,OB,OC,OD.2.分别延长OA,OB,OC,OD到G,C,E,F,使OGOA=OCOB=OEOC=OFOD=3.3.依次连结GC,CE,EF,FG.四边形GCEF就是所求作的四边形.如果反向延长OA,OB,OC,OD,就得到四边形G′C′E′F′,也是所求作的四边形.比较上图中各对应点的坐标,我们不难发现以坐标原点为位似中心的位似图形有以下性质:当以坐标原点为位似中心时,若原图形上点的坐标为(x,y),位似图形与原图形的位似比为k,则位似图形上的对应点的坐标为(kx,ky)或(-kx,-ky).五、课堂练习:课后作业。
导学案主备人:年级:九年级科目:数学2021年月日总序DCBA一、复述回顾:(二人小组完成) 问题一 : 1、相似图形的定义?2、请举例说明我们生活中相似图形的实例。
问题二:1、两个相似图形之间有什么关系?二、设问导读1、观察下图,有相似多边形吗?如果有,这种相似图形有什么特征?2、什么叫位似图形? 什么是位似中心?问题二:作位似图形1、把下图中的四边形ABCD 缩小到原来的21. 2、还有其他作法吗?请按不同方法画出三 自学检测:1.画出所给图中的位似中心.A BC AB C2、如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.四 巩固训练:1.三角尺在灯泡的照射下在墙上形成影子现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .2如图,ABC △与A B C '''△是位似图形,且位似比是1:2,若AB =2cm ,则A B ''= cm ,并在图中画出位似中心O .5.把右图中的五边形ABCDE 扩大到原来的2倍.五、拓展延伸:1用作位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可选在 .A A ′O 灯 三角尺投影C OABB 'C 'A 'A .原图形的外部B .原图形的内部C .原图形的边上D .任意位置2 如图,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心,若OA=2A A ′,S △ABC =8,则S △A ′B ′C ′=________.教学反思。
数学《位似图形》教案
一、教学目标
1. 掌握位似图形的概念和判定条件;
2. 理解位似比和尺寸比的概念及其计算方法;
3. 学会应用位似图形的知识解决实际问题。
二、教学重难点
1. 判定位似图形的条件;
2. 运用位似比和尺寸比解决实际问题。
三、教学内容与步骤
1. 引入新知识
(1)教师通过图片展示两个形状相似但大小不同的物体,引导学生学习“位似图形”的概念;
(2)教师引导学生观察位似图形的特点,如对应角度相等、对应边比例相等等。
2. 概念认知
(1)教师为学生讲解位似图形的判定条件;
(2)教师向学生讲解位似比和尺寸比的概念,以及它们的计算方法。
3. 课堂练习
(1)教师向学生展示多组位似图形,供学生判断是否为位似图形;
(2)教师引导学生计算位似比和尺寸比,并应用它们解决相
关问题。
4. 拓展练习
让学生自行寻找位似图形,并计算出它们的位似比和尺寸比。
五、教学方法
课堂讲解、举例分析、实例演练。
六、教学工具
黑板,彩色笔,投影仪。
七、教学评估
根据学生上课表现和表现出来的水平评估。
如:课堂答题、小组或个人实战练习、板书或课堂笔记等。
九年级数学上册《图形的位似》学案分析【学习目标】.通过实验、操作、思考活动认识位似图;2.会利用位似图原理将一个图形放大或缩小.【基础学习】一、情境创设公安人员在侦破案件中,有时会从一枚指纹来确定罪犯的身份,最终破案.借助放大镜可以将它放大,保持形状不变.再如微型胶卷所拍摄的照片就是把实物缩小,保持形状不变.你还能举出生活中将一个图形放大或缩小的例子吗?二、自主探究.已知点o和ΔABc,《图形的位似》教学设计(1)画射线oA、oB、oc,分别在oA、oB、oc上取点A1、B1、C1,使《图形的位似》教学设计画ΔA1B1C1.《图形的位似》教学设计(2)分别在oA、oB、oc的反向延长线上取点A2'、B2、C2,使《图形的位似》教学设计画ΔA2B2C2.(3)思考:ΔABc、ΔA1B1C1、ΔA2B2C2是否相似?为什么?2.归纳概括:(1)位似形:在上图中,两个多边形不仅,而且对应顶点的连线交于,对应边互相.像这样的两个图形叫做,这个点叫做位似.3.位似形的有关性质:(1)两个位似形一定是相似形;各对对应顶点所在的直线都经过同一点;各对对应顶点到位似中心的距离的比等于相似比.(4)利用位似形可以将一个图形放大或缩小.三、应用新知.关于对位似图形的表述,下列命题正确的是.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.《图形的位似》教学设计《图形的位似》教学设计2.如图,《图形的位似》教学设计与《图形的位似》教学设计是位似图形,点《图形的位似》教学设计是位似中心,若《图形的位似》教学设计,则《图形的位似》教学设计.3.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABc与△《图形的位似》教学设计是位似图形,且顶点都在格点上,则位似中心的坐标是.【达标检测】.如图,以o为位似中心,将四边形ABcD放大为原来的2倍.《图形的位似》教学设计《图形的位似》教学设计2.如图,以A为位似中心,将五角星缩小为原来的《图形的位似》教学设计.【课外学习】.如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若c(a,b)为线段AB上任一点,写出变化后点c的对应点c′的坐标.《图形的位似》教学设计2.如图,《图形的位似》教学设计与《图形的位似》教学设计是位似图形,且位似比是《图形的位似》教学设计,若AB=2cm,则《图形的位似》教学设计cm,并在图中画出位似中心o.《图形的位似》教学设计。
浙教版数学九年级上册4.6《图形的位似》说课稿一. 教材分析《图形的位似》是浙教版数学九年级上册第4.6节的内容。
这部分内容是在学生已经掌握了图形的相似性质和相似图形的性质的基础上进行教学的。
本节内容主要让学生了解位似的定义,掌握位似的性质,并能够运用位似的概念解决实际问题。
教材通过具体的图形实例,引导学生探索位似的性质,培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的相似性质和相似图形的性质有一定的了解。
但是,对于位似的概念和性质,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,通过具体的图形实例,引导学生观察、思考,从而让学生理解和掌握位似的性质。
三. 说教学目标1.知识与技能目标:让学生理解位似的定义,掌握位似的性质,能够运用位似的概念解决实际问题。
2.过程与方法目标:通过观察、思考、交流等过程,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:位似的定义,位似的性质。
2.教学难点:位似的概念的理解,位似的性质的应用。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、图形软件等辅助教学。
六. 说教学过程1.导入新课:通过展示一些生活中的相似图形,引导学生回顾相似图形的性质,为新课的学习做好铺垫。
2.探究位似:通过具体的图形实例,引导学生观察、思考位似的性质,引导学生发现位似的定义和性质。
3.总结位似:引导学生总结位似的性质,让学生明确位似的概念。
4.运用位似:通过一些实际问题,让学生运用位似的概念解决问题,巩固所学知识。
5.课堂小结:对本节课的内容进行总结,让学生明确学习的重点和难点。
6.布置作业:布置一些有关的练习题,让学生巩固所学知识。
《图形的位似》教案
教学目标
根据新课标要求,结合教材特点,本节课应达到以下几个目标:
1.理解图形的位似概念,掌握位似图形的性质。
2.会利用作位似图形的方法把一个图形进行放大或缩小。
3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。
4.经历位似图形性质的探索过程,进一步发展学生的探究、交流能力,培养学生动手、动脑、手脑和谐一致的习惯。
5.利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识。
6.发展学生的合情推理能力和初步的逻辑推理能力。
教学重点和难点
本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
直角坐标系中图形的位似变化与对应点坐标的关系,因为它涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,所以是本节教学的难点。
教学过程
一.创设情景,构建新知
1.位似图形的概念
下列两幅图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?(像一种什么镜头)
图片的形状相同,而且每组对应顶点都在由同一点出发的一条射线上.
如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.
例如上图中的任何两个五角星都是位似图形,点O是它们的位似中心;放电影时,胶片与屏幕的画面也是位似图形,光源就是它们的位似中心.
2.引导学生观察位似图形
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,并判断哪些是位似图形,哪些不是位似图形?为什么?
每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点。
所以都是位似图形。
各对应点所在的直线都经过同一点的相似图形是位似图形。
其相似比又叫做它们的位似比.
显然,位似图形是相似图形的特殊情形。
3.练一练:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE 与五边形A ′B ′C ′D ′E ′;
(2)在平行四边形ABCD 中,△ABO 与△CDO
(3)正方形ABCD 与正方形A ′B ′C ′D ′. (4)等边三角形ABC 与等边三角形A ′B ′C ′
(5)反比例函数y =6x (x>0)的图像与y =6
x (x<0)的图像
A
B
C
D
E O A ′
B ′
C ′
D ′
E
′A
B
C
D
E
O A ′B ′
D ′
E ′
A
B
D
O
A
B
C
D A ′B ′
C ′
D ′
A
B
C
O
A ′
B ′
C ′
(6)曲边三角形ABC 与曲边三角形A ′B ′C ′.
(7)扇形ABC 与扇形A ′B ′C ′,(B 、A 、B ′在一条直线上,C 、A 、C ′在一条直线上)
(8)△ABC 与△ADE (①DE ∥BC ; ②∠AED =∠B )
通过上面几个练习,使学生明白:图形相似;对应顶点的连线经过同一点,是判断位似图形两个不可缺少的条件。
2.如图P ,E ,F 分别是AC ,AB ,AD 的中点,四边形AEPF 与四边形ABCD 是位似图形吗?如果是位似图形,说出位似中心和位似比.
二.应用新知,适当提高. 1.位似图形的性质
(1)从上面练习第1(1)(4)题图中,我们可以看到,△OAB ∽△O A ′B ′,则
OA
OA ′
A B
C
B ′
C ′
A
B
C B ′
C ′
A
B C
D
E A
B
C
D
E
A B
C
D
E
P
F
=
OB OB ′ =AB A ′B ′ .从第2题的图中同样可以看到AF AD =AP AC =AE AB =EP BC =FP
DC
一般地,位似图形有以下性质
位似图形上任意一对对应点到位似中心的距离之比等于位似比. 2.作位似图形
例:如图,请以坐标原点O 为位似中心,作ABCD 的位似图形,并把ABCD 的边
长放大3倍.
分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O 和ABCD 的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点.
作法:如图所示
1.连结OA ,OB ,OC ,OD.
2.分别延长OA ,OB ,OC ,OD 到G ,C ,E ,F ,使OG OA =OC OB =OE OC =OF
OD
=3. 3.依次连结GC ,CE ,EF ,FG . 四边形GCEF 就是所求作的四边形.
如果反向延长OA ,OB ,OC ,OD ,就得到四边形G ′C ′E ′F ′,也是所求作的四边形.
3.直角坐标系中图形的位似变化与对应点坐标变化的规律 想一想:
1.四边形GCEF 与四边形G ′C ′E ′F ′具有怎样的对称性?
2.怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形? 比较图形中各对应点的坐标,我们还不难发现
x
y
A B C
D
O 2-24-46-68-8
10-1012-1214
-14
16-1618-182
-2
4-46-6
8-810-1012-1214-14x
y
A B C D O 2-24-46-68-810-10
12-1214
-14
16-1618-182-24
-46-68-810-1012-1214-14E
F G
E ′
F ′
G ′
C ′
以坐标原点为位似中心的位似变换有一下性质:若原图形上点的坐标为(x ,y ),像与原图形的位似比为k ,则像上的对应点的坐标为(kx ,ky )或(―kx ,―ky ).
4.练一练:
1.如图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长缩小到原来的12
.
2.如图,在直角坐标系中,△ABC 的各个顶点的坐标为A (-1,1),B (2,3),C (0,3).现要以坐标原点O 为位似中心,位似比为23 ,作△ABC 的位似图形△A ′B ′C ′,
则它的顶点A ′、B ′、C ′的坐标各是多少?
三.小结内容,自我反馈 今天你学会了什么?
位似图形的定义,位似图形的性质.
A B
C
O
x
y
1
23
-1-2-3123-1-2-3
4
O A B
C。