第4章多肽与蛋白质类药物
- 格式:pptx
- 大小:3.55 MB
- 文档页数:5
多肽和蛋白质类药物的发展过程在20世纪60年代至70年代,科学家们开始关注多肽和蛋白质类药物的制备和分离技术。
同时,他们也开始研究多肽和蛋白质类药物的结构与功能之间的关系。
这一时期研究的重点是单一多肽和蛋白质类药物,如单链胰岛素和重组生长激素。
20世纪80年代是多肽和蛋白质类药物发展的一个重要转折点。
随着基因工程技术的发展,科学家们能够通过重组DNA技术生产大量的多肽和蛋白质。
这种技术的应用极大地促进了多肽和蛋白质类药物研究的进展。
在这一时期,重组胰岛素、重组生长激素和重组干扰素等药物相继问世。
20世纪90年代至21世纪初,多肽和蛋白质类药物的研究进入了一个全新的阶段。
科学家们开始发展更加复杂的多肽和蛋白质类药物,如抗体药物。
抗体药物通过靶向疾病相关的分子目标,实现治疗效果。
这种药物以其高度的专一性和生物活性在临床上取得了显著的效果。
近年来,多肽和蛋白质类药物的研究和应用迎来了新的突破。
科学家们通过改变多肽和蛋白质的结构,增强其稳定性和生物活性。
同时,他们还通过改变给药途径和剂型,提高多肽和蛋白质类药物的生物利用度和稳定性。
这些新的技术和方法为多肽和蛋白质类药物的发展提供了更多的可能性。
总的来说,多肽和蛋白质类药物的发展经历了多个阶段。
从最初的分离和制备技术到基因工程技术的应用,再到复杂多肽和蛋白质类药物的研发,多肽和蛋白质类药物在生物医药领域发挥着越来越重要的作用。
未来,随着科学技术的进一步发展,多肽和蛋白质类药物的研究和应用将迎来更大的突破。
多肽类药物多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。
结构分析多肽的定性至少应包括氨基酸分析、序列分析及质谱分析。
纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量。
序列分析则提供氨基酸残基的精确排列顺序。
基于多种技术的质谱, 如快原子轰击、电喷雾、激光解吸, 经常用于提供多肽的相对分子量及其序列信息。
肽谱是蛋白质或多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”。
当多肽含有20 个以上的氨基酸残基时, 肽谱分析对多肽结构研究和特性鉴别具有重要意义。
2. 1 氨基酸分析用于氨基酸分析的水解方法主要是酸水解, 同时辅以碱水解。
酸水解中使用最广泛的是盐酸(一般浓度为6mo löL )。
多肽于110 ℃真空或充氮的安瓿瓶内水解10~24 h, 然后除去盐酸。
水解过程中氨基酸遭破坏的程度与保温时间有线性关系, 因此该氨基酸在多肽中的真实含量可通过以不同的保温时间对相应时间的样品中该氨基酸的含量作图, 用外推法求出。
高氨基酸分析仪的使用使氨基酸的分析越来越准确, 如W aters 公司的氨基酸分析系统的检出限已达100 fmo l。
2. 2 序列分析氨基酸测序主要为化学法, 酶法也有一定的意义。
化学法以Edman 降解法最为经典, 它对所有氨基酸残基具有普适性和近乎定量的高产率, 是近50年N 2端顺序分析技术的基础。
Edman机理的液相(旋转杯) 自动蛋白顺序分析仪在1967 年推出。
近年来不断对其改进, 其灵敏度已达到可以对0. 1pmo l 的样品进行常规分析。
2. 3 质谱(mass spect romet ry,M S)质谱以质量分析为基础, 可提供化合物的分子量以及一些结构信息。
1980 年代以后发展了许多新的“软电离”技术, 使其在蛋白质多肽分析中的应用越来越广。
多肽、蛋白质类药物给药系统摘要随着重组DNA技术的发展.基因工程肽和蛋白质药物的大规模生产已成现实,这类药物应用于临床的数量越来越多。
与传统的化学合成约物相比,其优点受到了广泛的关注,即与体内正常生理物质十分接近,更易为机体吸收,其药理活性高、针对性强、毒性低。
但由丁多肽、蛋门质类约物(1)分子质量大、稳定性高、易被胃肠道中的的蛋白水解酶降解;(2)生物半衰期短、生物膜渗透性差、生物利用度不高、不易通过生物屏障等,故其给药系统的研究一直足约剂学领域的一个热点。
许多学者曾尝试对肽类、蛋白质类约物进衍化学修饰、制成前体药物、应用吸收促进剂、使用酶抑制刺、采用离子电渗法皮肤给药以及设计各种给药系统解决上述问题.此炎药物一般注射给药,基本剂型足注射剂和冻粉针剂,常需频繁注射,患者顺从性差,且加重了患者的身体、心理和经济负担。
近年来,脂质体、微球、纳米粒等制剂新技术发展迅述歼逐渐完善,国内外学者将其广泛应用于多肽、蛋白质炎约物给约系统(drug deiivery system,DDS)的研究中,为此炎药物的临床应用铺平了道路。
本文就多肽、蛋白质类约物的给药系统及新技术进行综述。
主要介绍注射给药系统和非注射给约系统,及其下属几个分支。
重点介绍非注射给药系统。
关键字给药系统注射非注射l 新型注射给药系统1.1 控释微球制剂为了达到多肽、蛋白质类药物控制释放,可将其制成生物可降解的微球制剂。
目前已经实际应用的生物可降解材料主要有淀粉、明胶、葡糖糖、清蛋白、聚乳酸(PLA)、聚乳酸乙醇酸共聚物(PIGA)、聚邻酯、聚内酯和聚酐等;其中PLGA最为常用,改变乳酸乙醇酸的比例或相对分子质量,可得到不同降解时间的微球。
PLGA 微球相对于常规注射剂具有如下优点:(1)释药周期长,避免频繁给药;(2)使用安全;(3)药理作用增强;(4)避免发生明显的不良反应;(5)生物利用度显著提高。
1.2 脉冲式给药系统普通注射剂(疫苗、类毒素)一般至少接种3次,才能确保免疫效果,血药浓度波动大,且不能保证在疾病发作时相应的血药浓度。
结业论文多肽及蛋白质类药物学院环境工程学院专业生物工程班级生物11001班目录摘要一、前言二、多肽类药物和蛋白质类药物(一)多肽类药物(二)蛋白质类药物(三)多肽和蛋白类药物的主要生产方法三、重要多肽类药物(一)胸腺激素(二)促皮质素(三)降钙素四、重要蛋白类药物(一)白蛋白(二)干扰素(三)胰岛素(四)生长素(五)免疫球蛋白多肽及蛋白质类药物摘要随着蛋白组学计划的逐步深入,蛋白质结构与功能关系逐渐被破解,近年来越来越多的多肽及蛋白质类物质在诊断、治疗或作为疫苗预防各种疾病方面发挥着重要作用。
多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分,可通过农产品发酵而制备,药效高、副作用小、不积累中毒,作为人体内源性物质参与人体新陈代谢的调控,与人体高度契合。
多肽和蛋白类药物是目前医药研发领域中最有前景、进展最快的部分。
关键字:氨基酸多肽蛋白质一、前言多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。
多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。
N条多肽链按一定的空间结构缠绕纠结就构成了蛋白质。
大分子蛋白质水解会生成多肽。
多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。
随着生物工程技术的迅速发展,生物技术活性物质不断面世,已有不少生物技术药物应用于临床,国内外已批准上市的约40多种,1995年开发数为234种,目前正在研究的则成倍增加,在这些品种中,大量的均为多肽和蛋白质类药物。
由于多肽和蛋白质药物的体内外不稳定性,临床主要剂型是溶液型注射剂和冻干粉针。
为解决长期用药的问题,克服注射剂的不便和缺点,发展适宜给药途径的非注射传输系统是药剂学面对的挑战。
二、多肽类药物和蛋白质类药物(一)多肽类药物多肽类药物主要包括多肽疫苗、抗肿瘤多肽、多肽导向药物、细胞因子模拟肽、抗菌性活性肽、诊断用多肽及其它药用小肽等7大类。
氨基酸、多肽及蛋白质类药物山东药品食品职业学院张慧婧第一部分氨基酸、多肽及蛋白质基本知识一、蛋白质基本知识蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。
无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。
蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。
这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的表达。
1.生物催化作用作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。
生物催化作用是蛋白质最重要的生物功能之一。
正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。
2.结构功能第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。
在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。
丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。
膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。
3.运动收缩功能另一类蛋白质在生物的运动和收缩系统中执行重要功能。
肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。
细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。
4.运输功能有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。
如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。
多肽和蛋白质类药物特点是什么多肽和蛋白质类药物特点是什么多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。
下面是店铺给大家整理的多肽和蛋白质类药物的特点简介,希望能帮到大家!多肽和蛋白质类药物的特点1) 基本原料简单易得多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分,可通过农产品发酵而制备。
2)药效高,副作用低,不蓄积中毒多肽和蛋白质类药物本身是人体内源性物质或针对生物体内调控因子研发而得,医学教育网搜|集整理通过参与,介入,促进或抑制人体内或细菌病毒中生理生化过程而发挥作用,副作用低,药效高,针对性强,不会蓄积于体内而引起中毒。
3)用途广泛,品种繁多,新型药物层出不穷多肽和蛋白质类药物是目前医药研发领域中最活跃,进展最快的部分,是二十一世纪最有前途的产业之一。
将20种基本氨基酸按不同序列相互连接,可得到品种繁多,可用于治疗各种类型疾病的多肽和蛋白质类药物。
众多新型多肽和蛋白质类药物在治疗艾滋病,癌症,肝炎,糖尿病,慢性疼痛效果显著。
4) 研发过程目标明确,针对性强借助生命科学领域取得的大量研究成果,包括对各类疾病发病机理的揭示,对体内各种酶,辅酶,生长代谢调节因子的深入认识,可以针对性开展多肽和蛋白质类药物的研发。
多肽和蛋白质类药物的研发技术1) 化学合成方法以化学合成方法研制开发多肽和蛋白质类药物,已成为广泛采用的有效手段。
通过液相合成,固相合成,固/液合成相结合以及片段连接等方式, 已成功研发众多多肽和蛋白质类药物。
2) 改造生物活性多肽及现有多肽药物以生物活性多肽或现有多肽药物作参照,通过组合筛选,氨基酸序列简化或替代改造,是研发多肽药物的有效途径。
3) 提高活性多肽及现有多肽药物档次通过对内源性多肽或现有多肽药物进行结构修饰,以克服原有产物的弱点,减少副作用,提高药效, 是研发多肽蛋白质类新药的重要渠道。
4) 针对具生物活性的.多肽天然产物研发以生物活性天然多肽,尤其是海洋生物活性多肽为模板, 开展构效关系研究,以提高活性与效价,简化结构并降低副作用,是研发多肽蛋白质类新药的重要方向。
多肽类药物多肽类药物多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。
结构分析多肽的定性至少应包括氨基酸分析、序列分析及质谱分析。
纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量。
序列分析则提供氨基酸残基的精确排列顺序。
基于多种技术的质谱, 如快原子轰击、电喷雾、激光解吸, 经常用于提供多肽的相对分子量及其序列信息。
肽谱是蛋白质或多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”。
当多肽含有20 个以上的氨基酸残基时, 肽谱分析对多肽结构研究和特性鉴别具有重要意义。
2. 1 氨基酸分析用于氨基酸分析的水解方法主要是酸水解, 同时辅以碱水解。
酸水解中使用最广泛的是盐酸(一般浓度为6mo löL )。
多肽于110 ℃真空或充氮的安瓿瓶内水解10~24 h, 然后除去盐酸。
水解过程中氨基酸遭破坏的程度与保温时间有线性关系, 因此该氨基酸在多肽中的真实含量可通过以不同的保温时间对相应时间的样品中该氨基酸的含量作图, 用外推法求出。
高氨基酸分析仪的使用使氨基酸的分析越来越准确, 如W aters 公司的氨基酸分析系统的检出限已达100 fmo l。
2. 2 序列分析氨基酸测序主要为化学法, 酶法也有一定的意义。
化学法以Edman 降解法最为经典, 它对所有氨基酸残基具有普适性和近乎定量的高产率, 是近50年N 2端顺序分析技术的基础。
Edman 机理的液相(旋转杯) 自动蛋白顺序分析仪在1967 年推出。
近年来不断对其改进, 其灵敏度已达到可以对0. 1pmo l 的样品进行常规分析。
2. 3 质谱(mass spect romet ry,M S)质谱以质量分析为基础, 可提供化合物的分子量以及一些结构信息。
1980 年代以后发展了许多新的“软电离”技术, 使其在蛋白质多肽分析中的应用越来越广。