第三讲 数论专题 - 学生版
- 格式:doc
- 大小:261.50 KB
- 文档页数:8
生活就像海洋,只有意志坚强的人,才能到达彼岸。
——马克思小学阶段的数论知识包括数的整除、奇偶性、质数合数、约数倍数、同余问题、完全平方数等,这些知识也是初中数论的重点,分班考试的命题则在于考查这些知识的基本性质及其应用。
1.两个整数相加时,和是一个两位数,且两个数字相同;相乘时,积是一个三位数,且三个数字相同。
请写出所有满足上述条件的两个整数。
2. 一个五位数是54的倍数,并且它的各位数字都不为0。
删去它的一位数字后所得的四位数仍是54的倍数.再删去该四位数的一位数字后所得的三位数还是54的倍数,再删去该三位数的一位数字后所得的两位数还是54的倍数,试求原五位数。
3.已知2006120062111222N =⋅⋅⋅⋅⋅⋅ 个个,试将N 表示为4个大于1的自然数之积。
4.一队少年儿童不超过50人,围成一圈作游戏.每个儿童的左右相邻都恰是一个男孩子和一个女孩子。
问:这队少年儿童最多有多少人?为什么?真题模考第三讲数论生活就像海洋,只有意志坚强的人,才能到达彼岸。
——马克思5.将12345678910111213…依次写到第1997个数字,组成一个1997位数,此数除以9的余数是几?6. 求同时满足下列三个条件的自然数a 、b :①a b >;②169ab a b=+;③a b +是平方数。
7. 在11张卡片上各写有一个不超过5的数字,将这些卡片排成一行,得到一个11位数;再将它们按另一种顺序排成一行,又得到一个11位数.请证明这两个11位数的和的十进制表达式中至少有一位数字是偶数。
【例1】 已知p 、q 均为质数,且满足25359p p +=,则以3p +,1p q -+,24p q +-为边长的三角形是( )。
A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形考点拓展生活就像海洋,只有意志坚强的人,才能到达彼岸。
——马克思【例2】 π的前24位数值为3.14159265358979323846264 在这24个数字中,任意逐个抽取1个数字,并依次记作1a ,2a ,3a ,…24a ,则12342324()()()a a a a a a --- 为( )。
数论专题讲义数论专题数论主要分为以下几个模块:1、数的整除问题2、质数合数与分解质因数3、约数与倍数4、余数问题5、奇数与偶数6、位值原理7、完全平方数8、数字谜问题一、分裂问题一.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位数和偶数位数之和的差可以除以11,那么这个数可以除以114.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,然后这个数字可以除以7、11或13【备注】(以上规律仅在十进制数中成立.)性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果ca,CB,然后是C(a±b)性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果boa,Cob,然后COA用同样的方法,我们还可以得出:属性3如果a可以被B和C的乘积除,那么a也可以被B和C除。
也就是说,如果bcoa,那么么boa,coa.属性4如果数字a可以被数字B或数字C除,并且数字B和数字C是互质的,那么a必须被数字B除1/10除以和C的乘积。
也就是说,如果boa,COA和(B,C)=1,那么bcoa性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m是非零整数);性质6如果数a能整除数b,且数c能被数d整除,那么ac也能整除bd,如果b|a,和D C,然后是BD AC;1、整除判定特征如果六位数的数字是1992□ □ 可以除以105,最后两位数是多少?2、数的整除性质应用如果15abc6可以除以36,商是最小的,那么a、B和C分别是什么?3、整除综合性问题已知:23!?258d20c6738849766ab000。
小升初专题训练---数论数论在数学中旳地位是独特旳,高斯曾经说过“数学是科学旳皇后,数论是数学中旳皇冠”。
翻开任何一本数学辅导书,数论旳内容都占据了不少旳版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题旳题目分值大概占据整张试卷总分旳12%左右,小学阶段旳数论知识点重要有:1、质数与合数、因数与倍数、分解质因数2、数旳整除特性及整除性质3、余数旳性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清晰,2是唯一偶质数(1)质数:一种数除了1和它自身以外,没有其他旳因数,这样旳数统称质数。
(2)合数:一种数除了1和它自身以外,尚有其他旳因数,这样旳数统称合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一种不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。
假如一种自然数a能被自然数b整除,那么称a为b旳倍数,b为a旳约数。
假如一种自然数同步是若干个自然数旳约数,那么称这个自然数是这若干个自然数旳公约数。
在所有公约数中最大旳一种公约数,称为这若干个自然数旳最大公约数。
自然数a1,a2,…,an旳最大公约数一般用符号(a1,a2,…,an)表达,例如,(6,9,15)=3。
3.质因数与分解质因数(1)假如一种质数是某个数旳约数,那么就是说这个质数是这个数旳质因数。
(2)把一种合数用质因数相乘旳形式表达出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42旳质因数。
又如,50=2×5×5,2、5都叫做50旳质因数。
4、要注意如下几条:(1)1既不是质数,也不是合数。
第2讲数论专题(二)【学习目标】1、复习带余除法、同余性质、中国剩余定理问题;2、熟悉数论常见的解题思路。
【知识梳理】1、同余问题:若a,b除以c的余数相同,那么(a- b)能被c整除。
2、余数的三大性质:(1)和的余数等于余数的和;(2)差的余数等于余数的差;(3)积的余数等于余数的积。
【典例精析】【例1】满足被4除余1,被5除余1,被6除余1的最小自然数是____。
【趁热打铁-1】满足被5除余3,被6除余3,被7除余3的最小自然数是____。
【例2】有一个自然数分别去除360、314、245得到相同的余数,这个自然数最大可能是多少?【趁热打铁-2】692、608、1126三个数分別除以同一个自然数,得到的余数相同,这个自然数是多少?【例3】有3个吉利数:888,518,666,用它们分别除以同一个自然数,所得余数依次为a,a+7,a+10,求这个自然数.【趁热打铁-3】有一个自然数,用它去除226余a,去除411余a+1,去除527余a+2,则a= 。
【例4】一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?【趁热打铁-4】满足被5除余3,被6除余1,被7除余2的最小自然数是多少?【例5】一堆苹果,2个2个地数剩1个,3个3个地数剩2个,4个4个地数剩3个,5个5个地数剩4个,6个6个地数剩5个,求这堆苹果至少有多少个?【趁热打铁-5】有一袋奶糖发给学前班的小朋友,每人得8,最后刻下1糖,每人得10最后也剩下1颗糖,每人得12颗,最后还是剩下1颗糖。
这袋奶糖至少有多少颗?【例6】某歌舞团200多人在大厅列队排练,若排成7排则多2人,排成5排则多4人,排成6排则多3人,问该歌舞团共有多少人?【趁热打铁-6】某整数除以5余4,除以7余2,除以11余8,这个整数最小是多少?【例7】如果一个自然数a除以6余4,除以9余4,且a共有6个不同的约数,那么a最小是多少?【趁热打铁-7】一个自然数分别用7、8、9去除,余数分别为1、2、3,三个商数的和为570,这个自然数是____.【例8】在一根长木棍上分别用红、黄、蓝三种颜色做标记,将木棍分成了10等份、12等份和15等份。
小升初专项训练---数论数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。
翻开任何一本数学辅导书,数论的内容都占据了不少的版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,小学阶段的数论知识点主要有:1、质数与合数、因数与倍数、分解质因数2、数的整除特征及整除性质3、余数的性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清楚,2是唯一偶质数(1)质数:一个数除了1和它本身以外,没有其他的因数,这样的数统称质数。
(2)合数:一个数除了1和它本身以外,还有其他的因数,这样的数统称合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一个不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。
如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(6,9,15)=3。
3.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42的质因数。
又如,50=2×5×5,2、5都叫做50的质因数。
4、要注意以下几条:(1)1既不是质数,也不是合数。
第三讲数论真题模考1、某个自然数被187除余52,被188除也余52,那么这个自然数被22除的余数是_____2、有一种最简真分数,它们的分子与分母的乘积都是693,如果把所有这样的分数从大到小排列,那么第二个分数是___________。
3、在200至300之间,有三个连续自然数,其中。
最小的能被3整除,中间的能被5整除,最大的能被7整除,那么,这样的三个连续自然数是。
4、先任意指定7个整数,然后将它们按任意顺序填入27方格表第一行的七个方格中,再将它们按任意顺序填入方格表第二行的芳格中。
最后,将所有同一列的两个数之和相乘。
那么,积是。
(填奇或偶)。
5、将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数。
已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于。
6、1A,A除以11余5,除以9余7 ,除以13余3,这个数最小是________。
7、一位现在一百多岁的老寿星,公元2x时的年龄为x岁,则此老寿星2001年多少岁?8、两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______。
9、已知,m n都是自然数,且2n=126m,则n的最小值为_______________。
10、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这3种物品每样均平分给每个班,那么这三种物品剩下的数量相同,请问学校有多少个班?考点拓展【例1】在一位自然数中,任取一个质数和一个合数相乘,所有可能的乘积的总和是 _________【例2】将1~9九个自然数分成三组,每组三个数。
第一组三个数之积是48,第二组三个数之积是45,第三组三个数之和最大是。
【例3】 199677777741⋅⋅⋅÷个余 。
【例4】 2002名学生成一横排,第一次从左至右1—3报数,第二次从右至左1—5报数,两次报的数之和等于5的学生有 名。
小学阶段的数论知识包括数的整除、奇偶性、质数合数、约数倍数、同余问题、完全平方数等,这些知识也是初中数论的重点,分班考试的命题则在于考查这些知识的基本性质及其应用。
1.两个整数相加时,和是一个两位数,且两个数字相同;相乘时,积是一个三位数,且三个数字相同。
请写出所有满足上述条件的两个整数。
2. 一个五位数是54的倍数,并且它的各位数字都不为0。
删去它的一位数字后所得的四位数仍是54的倍数.再删去该四位数的一位数字后所得的三位数还是54的倍数,再删去该三位数的一位数字后所得的两位数还是54的倍数,试求原五位数。
3.已知2006120062111222N =⋅⋅⋅⋅⋅⋅个个,试将N 表示为4个大于1的自然数之积。
4.一队少年儿童不超过50人,围成一圈作游戏.每个儿童的左右相邻都恰是一个男孩子和一个女孩子。
问:这队少年儿童最多有多少人?为什么?5. 将12345678910111213…依次写到第1997个数字,组成一个1997位数,此数除以9的余数是几?第三讲数论6. 求同时满足下列三个条件的自然数a 、b :①a b >;②169ab a b=+;③a b +是平方数。
7. 在11张卡片上各写有一个不超过5的数字,将这些卡片排成一行,得到一个11位数;再将它们按另一种顺序排成一行,又得到一个11位数.请证明这两个11位数的和的十进制表达式中至少有一位数字是偶数。
【例1】 已知p 、q 均为质数,且满足25359p p +=,则以3p +,1p q -+,24p q +-为边长的三角形是( )。
A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形【例2】 π的前24位数值为 3.14159265358979323846264在这24个数字中,任意逐个抽取1个数字,并依次记作1a ,2a ,3a ,…24a ,则12342324()()()a a a a a a ---为( )。
余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛、小升初考试必考的奥数知识点,所以学好本讲知识对于同学们来说非常重要。
余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理、乘法余数定理、同余定理),及中国剩余定理和有关弃九法原理的应用。
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b,我们就称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0二、同余的概念和性质同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(mod m)。
(*)上式可读作:a同余于b,模m。
同余式(*)意味着(我们假设a≥b):a-b=mk,k 是整数,即m|(a-b)例如:①15≡365(mod 7),因为365-15=350=7×50。
②56≡20(mod 9),因为56-20=36=9×4。
③90≡0(mod 10),因为90-0=90=10×9。
由例③我们得到启发,a可被m整除,可用同余式表示为:a≡0(mod m)。
例如,表示a是一个偶数,可以写a≡0(mod 2);表示b是一个奇数,可以写b≡1(mod 2)。
同余的性质:性质1:a≡a(mod m)(反身性),这个性质很显然,因为a-a=0=m·0。
性质2:若a≡b(mod m),那么b≡a(mod m)(对称性)。
性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m)(传递性)。
性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m)(可加减性)。
性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。
数论讲义答案(第三章)1. 证明: 若n 为正整数, α为实数, 则(1) ][][αα=⎥⎦⎤⎢⎣⎡n n , (2) [][]ααααn n n n =⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡++1...1. 证明:(1) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r ,左边 = q n r q n r nq n n =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡][α, 右边 = []q n n r q n n r nq n n =⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡=}{}{αααα 所以[]αα=⎥⎦⎤⎢⎣⎡n n ][. (2) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r , α = q +( r + {n α})/n . r = 0时, α = q +{n α}/n , 左边 = q + q + … + q = nq . 右边 = nq .r ≥ 1时, 左边 = ⎥⎦⎤⎢⎣⎡-+++++⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡++n n n r q n n r q n n r q 1}{...1}{}{ααα = nq +∑∑--=--=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++11}{}{r n k n r n k n k n r n k n r αα = nq + 0 + n - 1 - (n - r ) + 1 = nq + r=[n α] = 右边. #2. 证明不等式[2α] + [2β] ≥ [α] + [α + β] + [β]证明:设α = m + a , β = n + b , m , n ∈Z , 0 ≤ a , b < 1. 不妨设a ≥ b , 则 [2α] + [2β] = [2m +2a ] + [2n + 2b ]= 2m + 2n + [2a ] + [2b ]而[α] + [α + β] + [β] = [m + a ] + [n + b ] + [m + n + a + b ]= 2m + 2n + [a ] + [b ] + [a +b ] = 2m + 2n + [a +b ]下证 [2a ] + [2b ] ≥ [a +b ] 而 a ≥ b , 故[2a ]≥[a +b ],自然有[2a ] + [2b ] ≥ [a +b ]. #3. 证明: 若a > 0, b > 0, n > 0, 满足n | a n - b n , 则n | (a n - b n )/(a -b ).证明:设p m || n , p 为一个素数, a - b = t , 若p |/t , 则由p m | a n - b n , 自然有p m | (a n - b n )/t . 现设p | t , 而tb t b t b a nn n n -+=-)( = ∑=--⎪⎪⎭⎫ ⎝⎛ni i i n t b i n 11因为!)1)...(1(11i t b i n n n t b i n i i n i i n ----+--=⎪⎪⎭⎫ ⎝⎛ (1) 在i = 1, 2, …, n 时, i !中含p 的最高方幂是∑∑∞=∞=≤-=<⎥⎦⎤⎢⎣⎡111k k kk i p ip i p i 又因p i -1 | t i -1, p m | n , 故由(1)可知p m | n i t b i n i i n ,...,1,1=⎪⎪⎭⎫ ⎝⎛--.即 p m | (a n - b n )/(a -b ). 把n 作因子分解并考察每一个素因子, 这就证明了n | (a n - b n )/(a -b ). #4. 证明: 若n ≥ 5, 2 ≤ b ≤ n , 则⎥⎦⎤⎢⎣⎡--b n b )!1(1. (1) 证明:若b < n , 则b (b -1) | (n -1)!, 即⎥⎦⎤⎢⎣⎡--b n b )!1(1, 且⎥⎦⎤⎢⎣⎡-b n )!1(∈Z , 故(1)成立. 若b = n , n 是一个合数且不是一个素数的平方, 可设b = n = rs , 1 < r < s < n , 由(n , n -1) = 1知s < n -1, 故b (b -1) = rs (n -1) | (n -1)!, (1)式成立.若b = n = p 2, p 是一个素数, 由n = p 2 ≥ 5知, 1 < p < 2p < p 2 - 1 = n - 1, 故p , 2p , n - 1是小于n 的三个不同的数. 故p ⋅2p ⋅(n -1) = 2b (b -1) | (n -1)!, 故(1)式成立.若b = n = p , p 是一个素数, 由(p -1)! + 1 ≡ 0 (mod p )知p p p p p p p p p p )1()!1(11)!1(11)!1()!1(---=-+-=⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡- 即)1()!1()!1(---=⎥⎦⎤⎢⎣⎡-p p p p p , 而(p , p -1) = 1知(p -1)⎥⎦⎤⎢⎣⎡-p n )!1(, (1)成立. #5. 证明: 对于任意的正整数n ,)!1(!)!2(+n n n是一个整数.证明: 因为pot p ((2n )!) = ∑∞=⎥⎦⎤⎢⎣⎡12i i p n , pot p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , pot p ((n +1)!) = ∑∞=⎥⎦⎤⎢⎣⎡+11i i p n .所以只需证∀ i ≥ 1, ⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡i i i p n p n p n 12. (*)设n = qp i + r , 0 ≤ r < p i , 则若r < p i - 1, 则,,1q p n q p n i i =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+(*)式成立. 若r = p i - 1, 则,,11q p n q p n i i =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+而⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=+≥⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡i i i i i i p n p n q p p q p p q p n i 1121122222, 故此时(*)式也成立. 所以)!1(!)!2(+n n n ∈Z . #6. 证明: 设∑==kj j n n 1, 则(1)!!...!!21k n n n n 是一个整数;(2) 如n 是一个素数, 而max(n 1, …, n k ) < n , 则!!...!!|21k n n n n n .证明:(1) 证法一 只需设n 1, n 2,…, n k 均为正数, 设p 为任意素数, 则v p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , v p ((n j )!) = k j p n i i j ≤≤⎥⎦⎤⎢⎣⎡∑∞=0,1, 只需证∑=⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡++k j i j ik p n p n n 11...对∀i ≥ 1均成立, 而由P64 性质2知这是显然的, 故!!...!!21k n n n n ∈Z .证法二 n = 2时,Z n n n n n n ∈⎪⎪⎭⎫ ⎝⎛=-111)!(!!, 假设n - 1时结论成立, 则当n 时Z n n n n n n n n n n n n n n n n n n n n k k k k ∈++++++=+++=)!()!...)((!!)!(!!...!)!...(!!...!!213212*********(由归纳假设知Z n n n n n n k ∈+++++)!()!...)((21321, 又!!)!(2121n n n n +∈Z .)(2) 若n 是素数, 且max(n 1, n 2,…,n k ) < n , 故n | n !, 而n |/n 1!, n 2!, …, n k !, 所以 !!...!!|21k n n n n n . #7. 证明: 如果在自然数列1 ≤ a 1 < a2 < … < a k ≤ n中, 任意两个数a i , a j 的最小公倍数[a i , a j ] > n , 则k ≤ ⎥⎦⎤⎢⎣⎡+21n . 证明:断言: 对于≤2n 的任意n + 1个正整数中, 至少有一个被另一个所整除. 设1 ≤ a 1 < a 2 < … < a n +1 ≤ 2n , a i = 2λi b i , λi ≥ 0, 2|/b i , 1 ≤ i ≤ n +1, 其中b i < 2n . 因为在1, 2, …, 2n 中只有n 个不同的奇数1, 3, …, 2n -1, 故b 1, b 2, …, b n +1中至少有两个相同. 设b i = b j , 1 ≤ i < j ≤ n +1, 于是在a i = 2λi b i 和a j = 2λj b i 中, 由a i < a j 知λi < λj . 故a i | a j .若k > ,21⎥⎦⎤⎢⎣⎡+n 当n = 2t 时, k > t n =⎥⎦⎤⎢⎣⎡+21, 故a 1, …, a k 为k (k ≥ t +1)个小于等于2t 的数, 故∃ i , j , 1 ≤ i < j ≤ k , 使得a i | a j . 故[a i , a j ] = a j ≤ n , 矛盾!若n = 2t + 1, 则k > ⎥⎦⎤⎢⎣⎡+21n = t + 1, 因为1, 2, …, n = 2t + 1中只能有t + 1个奇数, 故k 个数a 1, a 2, …, a k 中有一对数i , j , 1 ≤ i < j ≤ k , 使得a i | a j , 所以[a i , a j ] = a j ≤ n 矛盾. 故k ≤ ⎥⎦⎤⎢⎣⎡+21n . # 8. 证明: 若k > 0, 则∑==kd d u )(0)(ϕ. 证明:若∃ d , 使得ϕ(d ) = k ,则(1) 22 | d , 则u (d ) = 0不考虑.(2) 2 || d , 则(d /2, 2) = 1, 所以ϕ(d ) = ϕ(2⨯d /2) = ϕ(2)⨯ϕ(d /2) = ϕ(d /2) = k .而 u (d ) + u (d /2) = 0.(3) 2|/d , 则ϕ(2d ) = ϕ(2)⨯ϕ(d ) = ϕ(d ) = k , 而u (2d ) + u (d ) = 0. 故{u (d ) ≠ 0 | u (d ) = k }可分成若干对, 每对为u (d ) + u (2d ) = 0. 故∑==kd d u )(0)(ϕ. # 9. 证明∑=nd n u d u |22)()(.证明:由u (n )的定义有⎩⎨⎧=中含有平方因子中不含有平方因子n n n u ,0,1)(2, 当n 中不含有平方因子时, 显然∑==nd u d u |21)1()(当n 中含有平方因子时, 设n = n 02m , n 0 > 1, m 不含平方因子, 则0)()()()(1||.||0222022====∑∑∑∑>n d n d mn d nd d u d u d u d u .故=∑nd d u |2)(u 2(n ). #其实, 采用类似的方法可证⎩⎨⎧>=∑其它若,11,|,0)(|m n m d u k n d k. 10. 证明: 对于任一个素数p ,∑⎪⎩⎪⎨⎧≥===n d n p n n d p u d u | ,01, ,21,1)),(()(是其余情形若若若αα. 证明:n = 1结论显然. 若n = p α, α ≥ 1, 则2)()()1()1()),(()(|=+=∑p u p u u u d p u d u nd .若(n , p ) = 1, 则0)()),(()(||==∑∑nd nd d u d p u d u .若n = p αn 1, n 1 > 1, 则0)()()()()()()),(()(111|1|),(|1),(||=+=+=∑∑∑∑∑==n d n d pp d n d p d n d nd p u d u d u p u d u d u d p u d u #11. 证明∑=n d d d u n n |2)()()(ϕϕ 证明:n = 1时结论显然.n > 1时, 由于u (n ), ϕ(n )均是积性函数, 所以u 2(d )/ϕ(d ), ∑nd d d u |2)()(ϕ也是积性函数. 设n = p 1α1…p s αs , 则右边 = ∏∏∏===-=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+++sk s k s k kk k k k k k p p p p p u p p u k k 111221111)()(...)()(1ααϕϕ. 左边 =()∏∏∏===---=-=-sk k ksk kssk kssp p pp p pp p p p s s 111111111)1(...1 (11)αααα. 故 ∑=n d n n d d u |2)()()(ϕϕ. # 12. 证明: ∑=nd d d u |0)()(ϕ的充分必要条件是)2(mod 0≡n .证明:设n = k k p p αα (1)1, p 1, …, p k 为不同的素数, αi ≥ 1, i = 1, 2, …, k .)...()...(...)()()1()1()()(111|k kki iind p p pp u p p u u d d u ϕϕϕϕ+++=∑∑==∏∑==--++--+ki ikki i pp 11)1()1(...)1)(1(1=∏=--ki i p 1)11(所以,n pd d u ind |220)()(|⇔=∃⇔=∑某个ϕ. #13. 证明:)0(2)1()(1>+=⎥⎦⎤⎢⎣⎡∑=n n n d n d nd ϕ. 证明:n = 1时结论显然.假设对n = k 时成立, 即2)1()(1+=⎥⎦⎤⎢⎣⎡∑=k k d k d kd ϕ. 则n = k + 1时, 有)1(1)()(1)(1111++⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+∑∑∑==+=k d k d k d d k d d k d kd k d k d ϕϕϕϕ =)1()(2)1(11|++++∑+<+k d k k k d k d ϕϕ = ∑+++1|)(2)1(k d d k k ϕ =12)1(+++k k k = 2)2)(1(++k k . #证法二 因为∑⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡d n k d n 11, 所以∑∑∑⎥⎦⎤⎢⎣⎡====⎥⎦⎤⎢⎣⎡d n k nd nd d d n d 1111)()(ϕϕ∑∑⎥⎦⎤⎢⎣⎡===d n k n d d 11)(ϕ∑∑=⎥⎦⎤⎢⎣⎡==nk k n d d 11)(ϕ∑=⎥⎦⎤⎢⎣⎡=n k k n k 1)(ϕ)(1k k n n k ϕ∑=⎥⎦⎤⎢⎣⎡= )(...)3(3)2(2)1(n n n n ϕϕϕϕ++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∑∑∑+++=nd d d d d d |2|1|)(...)()(ϕϕϕn +++=...21 2)1(+=n n . # 14. 计算S (n ) = ∑⎪⎭⎫⎝⎛n d d n u d u |)(.解:若n = 1, S (1) = 1, 若n = p 1…p k , 则S (n ) = ∑⎪⎭⎫⎝⎛nd d n u d u |)(= u (1)u (p 1p 2…p k ) + u (p 1)u (p 2…p k ) + … + u (p k )u (p 1…p k -1) +… + u (p 1p 2…p k )u (1)= (-1)k (k k kk C C C +++ (1)0) = 2k (-1)k若n = p 12p 2…p k , 则S (n ) = ∑+-==⎪⎭⎫⎝⎛nd k k p p p u p u d n u d u |1211)1()...()()(其余情形S (n ) = 0. # 15. 证明: n 是素数的充分必要条件是σ(n ) + ϕ(n ) = nd (n ). 证明:“⇒” 若n 为素数, 则σ(n ) = 1 + n , ϕ(n ) = n - 1, d (n ) = 2, 所以有σ(n ) + ϕ(n ) = nd (n ).“⇐” n , d (n ), ϕ(n ), σ(n )均是极性函数, 若n 不为素数的方幂, n = n 1n 2, (n 1, n 2) = 1,σ(n 1n 2) + ϕ(n 1n 2) = σ(n 1)σ(n 2) + ϕ(n 1)ϕ (n 2)≠ (σ(n 1)+ϕ(n 1))⋅( σ(n 2)+ ϕ (n 2)) = n 1n 2d (n 1n 2).若n = p α, α ≥ 1, σ(n ) = 1 + p + … + p α-1 + p α, ϕ(n ) = p α - p α-1, d (n ) = α + 1, 1 + p + … + p α-2 + 2p α = (α + 1)p α, 只有α = 1时σ(n ) + ϕ(n ) = nd (n )才成立, 即n 是素数. # 16. 证明: 如果有正整数n 满足ϕ(n + 3) = ϕ(n ) + 2, (1)则n = 2p α 或n + 3 = 2p α, 其中α ≥ 1, p ≡ 3 (mod 4), p 是素数. 证明:经验证可知n = 1, 2不满足(1)式, 设n > 2, 则ϕ(n ), ϕ(n +3)均为偶数. 由(1)知ϕ(n )和ϕ(n +3)不能同时被4整除, 故只能有ϕ(n ) ≡ 2 (mod 4), ϕ(n +3) ≡ 0 (mod 4)或ϕ(n ) ≡ 0 (mod 4), ϕ(n +3) ≡ 2 (mod 4).令n = 2α1p 2α2…p k αk , 则ϕ(n ) = 2α1-1p 2α2-1(p 2-1)…p k αk -1(p k -1). 由于ϕ(n )中2α1-1, (p 2-1), …, (p k -1)均被2整除, 若ϕ(n ) ≡ 2 (mod 4), 则n 只能含有一个奇素数因子, 因此n 有三种情况: (1) n = 2α1, 此时α1 = 2, 故n = 4; (2) n = p 2α2, 此时p 2满足p 2 ≡ 3 (mod 4); (3) n = 2α1p 2α2, 此时α1 = 1, p 2 ≡ 3 (mod 4), 即n = 2p 2α2. 因为ϕ(4) ≠ ϕ(1) + 2, 所以若ϕ(n +3) ≡ 2 (mod 4), 经类似的分析可得n + 3 = p α, 2p α, α ≥ 1, p ≡ 3 (mod 4). 设n = p α, 由(1)得ϕ(p α+3) = p α - p α-1 + 2 (2)设2t || p α + 3, t ≥ 1, 由(2)得 p α - p α-1 + 2 = ϕ(2t ⋅(p α + 3)/2t )= 2t -1⋅ϕ( (p α + 3)/2t ) ≤ 2t -1⋅( (p α + 3)/2t -1) = (p α + 3)/2-2t -1即有 p α - p α-1 + 2 ≤ (p α + 3)/2 - 1, 化简得p α ≤ 2p α-1 - 3, 也即3 ≤ p α-1(2-p ) 由于p > 2, 故 3 ≤ p α-1(2-p )不能成立. 同样可证n + 3 = p α时, (1)式不成立, 故n = 2p α或n + 3= 2p α. # 17. 证明ϕ(n ) ≥ n /d (n ).证明:设n 的标准分解式为s l s l p p n ...11=, 故ϕ(n )d (n ) = n (1-1/p 1)…(1-1/p s )(l 1 + 1)…(l s + 1) ≥ n (1/2)s 2s = n于是得ϕ(n ) ≥ n /d (n ). # 18. 求出满足ϕ(mn ) = ϕ(m ) + ϕ(n ) (1)的全部正整数对(m , n ). 解:设(m ,n ) = d , 则从ϕ(n )的公式不难有ϕ(mn ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), 由(1)得ϕ(m ) + ϕ(n ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), (2)设ϕ(m )/ϕ(d ) = a , ϕ(n )/ϕ(d ) = b , a , b 都是正整数, (2)化为1/a + 1/b = d (3)d > 2时, 易证(3)无正整数解, 在d = 1和d = 2时, (3)分别仅有正整数解a = b = 2和a = b = 1. 在d = 1, a = b = 2时, ϕ(m ) = ϕ(n ) = 2, 因此(m , n ) = (3, 4), (4, 3); 在d = 2, a = b = 1时, ϕ(m ) = ϕ(n ) = 1, 于是(m , n ) = (2, 2). # 19. 若n > 0, 满足24 | n + 1, 则24 | σ(n ). 证明:由24 | n + 1知n ≡ -1(mod 3)和n ≡ -1(mod 8), 设因子d | n , 则3|/d , 2|/d , 可设d ≡ 1, 2 (mod 3), d ≡ 1, 3, 5, 7(mod 8).因为d ⋅(n /d ) = n ≡ -1 (mod 3)和d ⋅(n /d ) = n ≡ -1(mod 8), 由此推出, d ≡ 1 (mod 3), n /d ≡ 2 (mod 3) 或d ≡ 2 (mod 3), n /d ≡ 1 (mod 3), 和d ≡ 3 (mod 8), n /d ≡ 5 (mod 8) 或d ≡ 5 (mod 8), n /d ≡ 3 (mod 8) 或d ≡ 1 (mod 8), n /d ≡ 7 (mod 8) 或d ≡ 7 (mod 8), n /d ≡ 1 (mod 8).每一种情形都有d + n /d ≡ 0 (mod 3), d + n /d ≡ 0 (mod 8), 故d + n /d ≡ 0(mod 24). 又若d = n /d , 则n = d 2, d > 1, 则因为2|/n , 所以2|/d , 但n = d 2 ≡ 1 (mod 8)矛盾. 所以n 的所有正因子可以配对, 每对为d , n /d , 故24 | σ(n ). # 20. 证明: 若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≤ 8, 则ϕ(n ) > n /6. 证明:ϕ(n ) = ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-k p p n 11...111 而p i 越大, 1 - 1/p i 越大, 故只要证p 1, p 2, …, p 8为前8个素数时, ϕ(n ) > n /6成立即可, 即要证611911...511311211>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-, 而左边=6132332355296>, 即结论成立. # 21. 设w (1) = 0, n > 1, w (n )是n 的不同的素因子的个数, 证明:f (n ) = w (n )*μ(n ) = 0或1.证明:若n = p α (α ≥ 2)f (n ) = w (n )*u (n ) = ∑⎪⎭⎫⎝⎛nd d n w d u |)( = u (1)⋅w (p α) + u (p )⋅w (p α-1) = u (1)⋅1 + (-1)⋅1 = 0.若n = p ,f (n ) = w (n )*u (n ) = w (1)⋅u (p ) + w (p )⋅u (1) = 1若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≥ 2, 则 f (n ) = w (n )*u (n )= ∑⎪⎭⎫⎝⎛nd d n w d u |)(= )1()1())1(()1(...)1()1()1(1110w C k k C k u C k u C k k k k k k kk -⋅+---⋅++-⋅-⋅+⋅⋅-- = 1|)')1((=-x k x= 0 # 22. 设f (x )的定义域是[0, 1]中的有理数,F (n ) = ()nknk f 1=∑, F *(n ) = ()n k nn k k f 1),(1==∑,证明: F *(n ) = μ(n )*F (n ). 证明:由Mobius 变换定理知, 等价于证明F (n ) = F *(n )*e (n ), 即要证F (n ) = ∑∑∑==⎪⎭⎫ ⎝⎛=nd dd k k nd d k f d F |1),(1|*)(. 而对于r /n , r = 1, 2, …, n 的每个分数, 既约后均为k /d , d | n , k ≤ d , (k , d ) = 1的形式, 即为某个r /n , 1 ≤ r ≤ n . 故∑∑∑===⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛n r nd dd k k n r f d k f 1|1),(1, 即F (n ) = ∑nd d F |*)(, 再由Mobius 逆变换即得. #23. 证明: 若f (n )是完全积性函数, 则对所有的数论函数g (n ), h (n ), 有f (n ) (g (n ) *h (n )) = (f (n )g (n )) * (f (n )h (n )).证明:f (n )⋅(g (n )*h (n )) = f (n )⋅(∑⎪⎭⎫⎝⎛nd d n h d g |)()= ∑⎪⎭⎫⎝⎛nd d n h d g n f |)()(= ∑⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛nd d n h d n f d g d f |)()(= (f (n )⋅g (n ))*(f (n )⋅h (n )) #24. 证明: 若f (n )和f 1(n )各为g (n )和g 1(n )的麦比乌斯变换, 则()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. 证明:f (n ) = ∑nd d g |)(, f 1(n ) = ∑nd d g |11)(,∑∑∑⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛nd n d dc d n g c g d n g d f |||11)()( ∑∑∑∑∑==⎪⎭⎫⎝⎛an b na n a an b n d b g a g b g a g d n f d g ||1||1|1)()()()()( 令b = n /d , 则(n /d ) | (n /a )⇒ a | d . 于是∑∑∑∑⎪⎭⎫⎝⎛=n d d a an b na d n g a gb g a g ||1||1)()()(.故∑∑⎪⎭⎫⎝⎛n d dc d n g c g ||1)(与∑∑n a an b b g a g ||1)()(展开式中每一项均相等, 因此()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. # 证法二f = g *e ,f 1 =g 1*e , 则f *g 1 = g *e *g 1 = g *g 1*e = g *(g 1*e ) = g *f 1. # 25. 设f (x )是一个整系数多项式, ψ(n )代表f (0), f (1), ⋅⋅⋅ , f (n -1) (1)中与n 互素的数的个数, 证明: (1) ψ(n )是积性数论函数;(2) ψ(p α) = p α-1( p -b p ), b p 代表(1)中被素数p 整除的数的个数. 证明:(1) 需证 ∀(m , n ) = 1,f (0), f (1), …, f (n -1) f (n ), f (n + 1), …, f (2n -1) ……f ((m -1)⋅n ), f ((m -1)⋅n + 1), …, f ((m -1)⋅n + n -1)中与mn 互素的个数为ψ(m )ψ(n )个. 又f (x )为整系数多项式, 故 f (i + n ) ≡ f (i ) mod n f (i + m ) ≡ f (i ) mod m故上述mn 个数中每一行与n 互素的有ψ(n )个, 所以f (0), f (1), …., f ((m -1)⋅n + n -1)中共有m ψ(n )个与n 互素的数. 而f (i ), f (n + i ), …, f ((m -1)⋅n + i )由于i , n + i , …, (m -1)⋅n + i 恰好通过mod m 的一组完系, 所以上述m ψ(n )个与n 互素的数中有ψ(m )ψ(n )个与m 互素, 因此有ψ(mn ) = ψ(m )ψ(n ). (2) (a , p α) = 1⇔(a , p ) = 1, 而f (0), f (1), …, f (p -1) f (p ), f (p + 1), …, f (2p -1) ……f ((p α-1-1)⋅p ), f ((p α-1-1)⋅p + 1), …, f ((p α-1-1)⋅p + p -1) 每一行与p 互素个数为p -b p , 于是ψ(p α) = p α-1(p -b p ). # 26. 证明.))((())((2|3|t d t d nt nt ∑=∑证明:因为d 为积性函数, 故d 3, d 3*e , (d *e )2均为积性函数, 故只需对n = 1及n = p α证明上式即可!n = 1时, 左边 = 1 = 右边, 故命题成立. n = p α时, p 为素数, α ≥ 1时()()223330303|32141)1(...21)1())(())((++=++++=+==∑∑∑==ααααααi i ipt i p d t d ()()∑∑∑∑=++=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==ααααααp t i i i p t t d i p d t d |32220202|))((2141)1()()(. # 27. 找出所有的正整数n 分别满足(1) ϕ(n ) = n /2; (2) ϕ(n ) = ϕ(2n ); (3) ϕ(n ) = 12.证明: 设n = p 1α1 p 2α2⋅⋅⋅ p k αk , p 1 < p 2 < … < p k , 则ϕ(n ) = n (1-1/p 1)…(1-1/p k ).(1) 若ϕ(n ) = n /2, 则(1-1/p 1)…(1-1/p k ) = 1/2.若t = 1, 则p 1 = 2, n = 2α即为所求.若p 1 ≠ 2, (1-1/p 1)…(1-1/p k ) = 1/2, 则2(p 1-1)…(p k -1) = p 1p 2…p k , 而p 1, p 2, …, p k 均为不同的奇素数, 所以此时ϕ(n ) = n /2不成立.(2) 若n 为奇数, p 1, p 2, …, p k 均为不同的奇素数, 则)(11...1111...112112)2(11n p p n p p n n k k ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 若n 为偶数, 设p 1 = 2, 则)(211...211211...112112)2(2n p n p p n n t ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 所以当n 是奇数时, ϕ(n ) = ϕ(2n ).(3) 若ϕ(n ) = p 1α1-1(p 1-1) p 2α2-1(p 2-1)⋅⋅⋅ p k αk -1(p k -1) = 12, 则p i - 1 | 12, i = 1,2, …, k . 故p i ∈ {2, 3, 5, 7, 13}且k ≤ 3, αi ≤ 3, i = 1, 2, …, k . 则若2|/n , ϕ(n ) = 12, 则n = 13, 3⨯7; 若2||n , 则n = 2⨯13, 2⨯3⨯7; 若4 || n , 则n = 4⨯7. 若2k || n (k ≥ 3), 则ϕ(n ) = ϕ(2k )⋅ϕ(n /2k ) = 2k -1⋅ϕ(n /2k ) = 12没有整数解, 所以ϕ(n ) = 12的解只有n = 13, 3⨯7, 2⨯13, 2⨯3⨯7, 4⨯7. #28. 证明: 设p n 表示第n 个素数, 则存在正常数C 1, C 2使C 1 n log n < p n < C 2 n log n .证明:n ≥ 2时, 由第7节定理1有nnn n n log 12)(log 81≤≤π将n 换成p n , 有nn n np p n p p log 12log 81≤≤. (1)上面不等式左边给出 p n ≤ 8n log p n . (2) 两边取对数有 log p n ≤ log8n + loglog p n . (3) 又x > 1时, log x < x /2, 所以loglog p n < log p n /2. 所以由(3)式, 有log p n /2<log8n . log p n <2log8n ≤8log n (因为n ≥ 2, (8n )2 ≤ n 8)再由(2)有, p n <64n log n , 取C 2 = 64即可. 而(1)的右边给出p n ≥ n log p n /12> n log n /12, 故取C 1 = 1/12即可. 即(1/12) n log n < p n < 64 n log n . #29. 证明: 设f 1 = f 2 = 1, F n +2 = F n +1 + F n (n ≥ 0), 则(F m , F n ) = F (m , n ).证明:(1) 首先证明对于n ≥ 2, m ≥ 1有f n +m = f n -1f m + f n f m +1, (*)对m 归纳证之m = 1时, 要证f n +1 = f n -1f 1 + f n f 2 = f n -1 + f n 即可. 假设小于m 时(*)成立. 则等于m 时, 由题设 f n +m = f n +m -1 + f n +m -2= (f n -1f m -1 + f n f m ) + (f n -1f m -2+f n f m -1) (归纳假设) = f n -1(f m -1 + f m -2) + f n (f m + f m -1) = f n -1 f m + f n f m +1 (m ≥ 3)m = 2时, f n +2 = f n +1 + f n = f n + f n -1 + f n = 2f n + f n -1f 2 = f n -1f 2 + f n f 3 故(*)成立.(2) 若m | n , 则f m | f n , 事实上, 设n = mn 1, 对n 1归纳, n 1 = 1时显然, 设f m | f mn 1, 则f m (n 1+1) = f mn 1+m )1(=f mn 1-1⋅f m + f mn 1⋅f m +1 故f m | f m (n 1+1) 故m | n 时, f m | f n . (3) (f n , f n + 1) = 1, n ≥ 1设(f n , f n + 1) = d , 则由题设 f n + 1 = f n +f n - 1 ⇒ d | f n - 1, 继续下去得d | f 1 = 1, 即d = 1. (4) 设m > n , (f m , f n ) =f (m , n ). 若m = n , 显然. 事实上, 设m = nq + r , 0 < r < n .(因若n | m , 由(2)显然). 由(1)及(2)有:(f m , f n ) = (f nq + r , f n )= (f nq - 1f r + f nq f r + 1, f n ) nqn f f |=(f nq - 1f r , f n )而f n | f nq , (f nq - 1, f nq ) = 1, ∴(f nq - 1, f n ) = 1, ∴(f m , f n ) = (f r , f n )令n = q 1r + r 0, 同上又有(f r , f n ) = (f r , f r 0) =…=f (m , n ). # 30. 证明: 设f (n )是一个积性函数, 则对素数的方幂p α (α ≥ 1)有f ( p α) = f ( p )α,则f (n )是完全积性函数. 证明:设m = p 1α1 p 2α2⋅⋅⋅ p k αk , n = p 1β1 p 2β2⋅⋅⋅ p k βk , αi ≥ 0, βi ≥ 0, i = 1, 2 , …, k .f (m ) = f (p 1α1 p 2α2⋅⋅⋅ p k αk ) = f (p 1α1)…f (p k αk ) = f (p 1)α1…f (p k )αk .同理, f (n ) = f (p 1)β1…f (p k )βk . 所以f (mn ) = f (p 1α1+β1p 2α2+β2⋅⋅⋅ p k αk +βk ) = f (p 1)α1+β1…f (p k )αk +βk . #31. 证明: 若F (n ), f (n )是两个数论函数, 则F (n ) = nd |∏f (d )的充分必要条件是f (n ) = nd |∏F (d )μ(n /d ).证明:“⇒”)/(||1|)/(1)()(d n u n d dd nd d n u d f d F ∏∏∏== )/(|)/(|1111)(td n u n d d n t d f ∏∏(d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d f = ∏=11|1)(d n nd d f= f (n )“⇐”)/(||1|)/(1)()(d n u n d dd nd d n u d F d f ∏∏∏== )/(|)/(|1111)(td n u n d d n t d F ∏∏ (d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d F= ∏=11|1)(d n n d d F= F (n ) #。
第三讲数论专题
重点知识点:
一、整除性质
①如果自然数a为M的倍数,则ka为M的倍数。
(k为正整数)
②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。
③如果a为M的倍数,p为M的约数,则a为p的倍数。
④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。
二、整除特征
1.末位系列
(2,5)末位
(4,25)末两位
(8,125)末三位
2.数段和系列
3、9 各位数字之和——任意分段原则(无敌乱切法)
33,99 两位截断法——偶数位任意分段原则
3.数段差系列
11
整除判断:奇和与偶和之差
余数判断:奇和-偶和(不够减补十一,直到够减为止)
7、11、13—三位截断法:从右往左,三位一隔:
整除判断:奇段和与偶段和之差
余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:
1.除数分拆:(互质分拆,要有特征)
2.除数合并:(结合试除,或有特征)
3.试除技巧:(末尾未知,除数较大)
4.同余划删:(从前往后,剩的纯粹)
5.断位技巧:(两不得罪,最小公倍)
四、约数三定律
约数个数定律:(指数+1)再连乘
约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)
例题:
【例1】2025的百位数字为0,去掉0后是225,225×9=2025。
这样的四位数称为“零巧数”,那么所有的零巧数是_____。
【巩固】某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到____人。
【例2】若两个自然数的平方和是637,最大公约数与最小公倍数的和为49,则这两个数是多少?
【巩固】两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是
_______。
【例3】一个两位数,数字和是质数。
而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数。
满足条件的两位数为_____。
【例4】对四位数 a b c d,若存在质数p和正整数k,使a×b×c×d=p k,且a+b
+c+d=p p-5,求这样的四位数的最小值,并说明理由。
【例5】已知,23!= 2585a01b738c849766de000 其中a,b,c,d,e表示五个互不相同的偶数数字,且c>b 求a,b,c,d,e分别是多少?
余数问题
一、带余除法的定义及性质:
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:
r=时:我们称a可以被b整除,q称为a除以b的商或完全商
(1)当0
r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商
(2)当0
一个完美的带余除法讲解模型:
如图,这是一堆书,共有a本,这个a就可以理
解为被除数,现在要求按照b本一捆打包,那么b就
是除数的角色,经过打包后共打包了c捆,那么这个
c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:
1.余数的加法定理
a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.
2.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.
3.同余定理
若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除
用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:
任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
++++=
例:检验算式1234189818922678967178902889923
四、中国剩余定理:
一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么先由5735
⨯=是否可以,很显然70除以3余1
就继续看5和7的“下一个”倍数35270
类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。
最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:
⨯+⨯+⨯±=-,其中k是从1开始的自然数。
270321245[3,5,7]233[3,5,7]
k k
也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。
例如对上面的问题加上限制条件“满足上面条件最小的自然数”,
⨯+⨯+⨯-⨯=得到所求那么我们可以计算2703212452[3,5,7]23
如果加上限制条件“满足上面条件最小的三位自然数”,
我们只要对最小的23加上[3,5,7]即可,即23+105=128。
例题:
【例1】一列数,前几个数是1,3,8,21,55,144,377,987,…,通过观察中间数的3倍都是它前后相邻2个数之和,求:这列数中的第2011个数除以6所得的余数是几?
【巩固】有一串数:5,8,13,21,34,55,89,…,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是前两个数的和。
那么在这串数中,第2011个数被3除后所得余数是几?
【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______。
【例3】一个自然数除429、791、500所得的余数分别是a+5、2a、a,求这个自然数和a的值。
【巩固】学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能地平均分给每位小朋友。
余下的苹果、饼干、糖的数量之比是1∶2∶3,问学前班有多少位小朋友?
【例4】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是
570,求这个自然数。
【拓展】一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条
件的自然数最小为____。
【例5】已知 a =20082008…2008 ,问:a除以13所得的余数是______。
2008个2008
课后练习
1、(全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.
2、已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?
3、(全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.
4、求12644319÷的余数
5、已知60,154,200被某自然数除所得的余数分别是1a -,2a ,31a -,求该自然数的值.
6、有三所学校,高中A 校比B 校多10人,B 校比C 校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A 校总人数是________人.
6、三个质数的乘积恰好等于它们的和的7倍,求这三个质数.
7、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.
8、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.
9、在7进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
⨯=?
10、在几进制中有12512516324
11、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?。