第六章空间力系
- 格式:ppt
- 大小:860.50 KB
- 文档页数:93
第6章力系的平衡——思考题——解答6-1 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,那么能否求解九个未知量为什么6-1 解答:(1) 空间一般平衡力系,有六个独立的平衡方程,能求解六个未知量。
(2) 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,但并非独立,因为三个相互相交的坐标平面满足一定的几何关系(每一个坐标平面之间的夹角是确定的,共有三个确定的夹角),这样得到的三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,力系就有九个平衡方程,其实独立的还是六个平衡方程,能求解六个未知量。
6-2 试问在下述情况下,空间平衡力系最多能有几个独立的平衡方程为什么(1)各力的作用线均与某直线垂直; (2)各力的作用线均与某直线相交; (3)各力的作用线均与某直线垂直且相交; (4)各力的作用线均与某一固定平面平行; (5)各力的作用线分别位于两个平行的平面内; (6)各力的作用线分别汇交于两个固定点; (7)各力的作用线分别通过不共线的三个点;(8)各力的作用线均平行于某一固定平面,且分别汇交于两个固定点; (9)各力的作用线均与某一直线相交,且分别汇交于此直线外的两个固定点; (10)由一组力螺旋构成,且各力螺旋的中心轴共面;(11)由一个平面任意力系与一个平行于此平面任意力系所在平面的空间平行力系组成;(12)由一个平面任意力系与一个力偶矩均平行于此平面任意力系所在平面的空间力偶系组成。
6-2 解答:空间的一般平衡力系共有六个独立的平衡方程0=∑xF,0=∑y F ,0=∑z F ,0=∑x M ,0=∑y M ,0=∑z M(1) 各力的作用线均与某直线垂直 —— 最多有五个独立平衡方程。
假设各力的作用线均与z 轴垂直,则0=∑z F 自动满足,独立的平衡方程有5个。
《工程力学》练习题第一章绪论1. 强度是指构件在外力作用下抵抗_破坏_的能力,刚度是指构件在外力作用下抵抗_变形_的能力,稳定性是指构件在外力作用下保持_平衡_的能力。
2. 静力学研究的对象是刚体,刚体可以看成是由质点系组成的不变形固体。
材料力学研究的对象是变形固体。
(√)3. 变形固体四种基本变形,即拉压变形、剪切与挤压变形、扭转变形及弯曲变形。
(√)4. 在材料力学对变形固体假设中,最小条件假设是指在外力的作用下,变形固体所产生的变形较小,在强度校核计算中采用初始状态的尺寸进行计算。
(√)5. 材料力学对变形固体的假设中,同向异性假设是指变形固体在不同方位显示出的力学性能的差异性。
但在实际中仍然按各向同性计算。
(√)第二章静力学的基本概念和受力分析1. 刚体是指在力的的作用下,大小和形状不变的物体。
2. 力使物体产生的两种效应是___内_____效应和_ _外___效应。
3、力是矢量,其三要要素是(大小)、方向及作用点的位置。
4、等效力系是指(作用效果)相同的两个力系。
5、非自由体必受空间物体的作用,空间物体对非自由体的作用称为约束。
约束是力的作用,空间物体对非自由体的作用力称为(约束反力),而产生运动或运动的趋势的力称为主动力。
6、物体的平衡状态是静止状态。
(X)7、物体的平衡状态是匀速直线运动态。
(X)8.作用力与反作用力是一组平衡力系。
(X )9、作用在刚体上的二力,若此两力大小相等、方向相反并同时作用在同一直线上,若此刚体为杆件则称为而二力杆件。
(√)10、作用在刚体上的力,可以沿其作用线滑移到刚体上的任意位置而不会改变力对刚体的作用效应。
(√)11、作用在刚体上的力,不能沿其作用线滑移到刚体上的任意位置。
主要是滑移后会改变力对刚体的作用效应。
(X )12、作用在刚体上的三个非平行力,若刚体处于平衡时,此三力必汇交。
(√)13、两物体间相互作用时相互间必存在一对力,该对力称为作用力与反作用力。
第六章空间力系和重心教学目标1 能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。
2 了解空间力系向一点简化的方法和结果。
3 能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。
4 能正确地画出各种常见空间约束的约束力。
5 对重心应有清晰的概念,能熟练地应用组合法求物体的重心。
本章重点1 力在空间直角坐标轴上的投影和力对轴之矩。
2 空间汇交力系、空间任意力系、空间平行力系平衡方程的应用。
3 各种常见空间约束的约束力。
4 重心的坐标公式。
本章难点空间矢量的运算,空间结构的几何关系和立体图。
教学过程(下页)一、空间力系的简化 1.空间力系向一点简化刚体上作用空间力系),,(21n F F F,将力系中各力向任选的简化中心O 简化。
主矢:∑∑='=C i F F F,与O 点选择无关。
(6-1)主矩:∑∑∑⨯===)()(00i i i i F r F M M M,与O 点的选择有关。
(6-2) 主矢F和主矩0M 的解析表达式222)()()(∑∑∑++=iz iy ix F F F F (6-3) FFx F ix∑=),cos(,FFy F iy∑=),cos(,FFz F iz∑=),cos(2220))(())(())((i z i y i x F M F M F M M ∑∑∑++= (6-4)0)(),cos(M F Mx M i x∑=,00)(),cos(M F My M i y∑=,00)(),cos(M F Mz M i z∑=结论:空间力系向任一点简化,一般可得到一力和一力偶,该力通过简化中心,其大小和方向等于力系的主矢,该力偶的力偶矩矢等于力系对简化中心的主矩。
2.空间力系简化的最后结果 (1)空间力系平衡0=F ,00=M,此空间力系为平衡力系。
(2)空间力系简化为一合力偶0=F ,00≠M ,此空间力系简化为一合力偶,合力偶矩矢等于力系主矩0M与简化中心的位置无关。