工程力学第六章(重心)
- 格式:ppt
- 大小:504.00 KB
- 文档页数:15
工程力学重点总结—期末考试、考研必备!!第一章静力学的基本概念和公理受力图一、刚体P2刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点。
平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1、力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2、二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3、加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4、作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5、刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力1、柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体。
2、光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力。
3、光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定。
4、链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力和的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。
(b )同上。
由于力和的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
2.不计杆重,画出下列各图中AB 杆的受力图。
解:(a )取杆AB 为研究对象,杆除受力外,在B 处受绳索作用的拉力,在A 和E 两处还受光滑接触面约束。
约束力和的方向分别沿其接触表面的公法线,并指向杆。
其中力与杆垂直,力通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力和,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且=。
研究杆AB ,杆在A 、B 两点受到约束反力和,以及力偶m 的作用而平衡。
根据力偶的性质,和必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力和,在B 点受到支座反力。
和相交于O 点,根据三力平衡汇交定理,可以判断必沿通过pB RpB Rp B T A N E N E N A N B N C N BN CN A N B N A N B N A T C T B N A T C TB NB、O两点的连线。
见图(d).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
一、单选题1、科学知识可以通过对自然的探究而获得,探究下列事实,其中具有减小摩擦作用的是()。
A.蛇的体表覆盖粗糙的鳞片B.蜈蚣腹部有许多足C.啄木鸟有尖尖的喙D.泥鳅体表有一层粘滑的液体正确答案:D2、下列各例子中,属于有害摩擦的是()。
A.吃饭时,筷子与食物之间的摩擦B.拔河比赛,手与绳子之间的摩擦C.自行车行进时,后轮胎与地面的摩擦D.机器运转时,各部分之间的摩擦正确答案:D3、摩擦与我们的生活息息相关,关于摩擦的说法中不正确的是()。
A.利用货物与传送带之间的摩擦把货物送到高处B.利用火柴与火柴盒之间的摩擦使火柴头的温度上升而燃烧C.气垫船通过船底向下喷气,在船底和水面之间形成一层空气垫,使航行时阻力大大减小D.机器上安装的滚动轴承,它可以使摩擦大大增加正确答案:D4、在棋类比赛中,比赛现场附近的讲棋室内所用的棋盘是竖直放置的,棋子可以在棋盘上移动但不会掉下来。
原来,棋盘和棋子都是由磁性材料制成的,棋子不会掉落的原因是因为棋子()。
A.受到的空气的浮力等于重力B.受到棋盘对它向上的摩擦力C.受到的重力很小可忽略不计D.和棋盘间存在很大的吸引力正确答案:B5、假如没有摩擦,下列现象是不可能发生的是()。
A.人可以在地面上行走如飞B.地面上滚动的球、行驶的车辆很难停下来C.用吹灰之力就可以将火车沿铁轨推动D.写字时手拿不住笔正确答案:A6、自行车刹车时,手捏车闸越紧,自行车就停得越快,这是因为()。
A.增大了车轮与闸皮间的接触面积B.增大了压力C.变滚动摩擦为滑动摩擦D.增大了接触面的粗糙程度正确答案:B7、一物体重100 N,当在水平地面上滑动时摩擦力是30 N,将物体提起时对它的拉力为F1,在地面上匀速运动时拉力为F2 ,则F1、F2的大小分别是()。
A.100 N、100 NB.100 N、30 NC.30 N、30 ND.30 N、100 N正确答案:B8、关于磁悬浮列车减小摩擦的方法,正确的说法是()。
第一章静力学基础第一节静力学的基本概念1、静力学是研究物体在力系作用下平衡规律的科学。
2、力是物体之间的相互机械作用,这种作用使物体的机械运动状态发生变化,同时使物体的形状或尺寸发生改变。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应。
3、力对物体作用的效应,取决于力的大小、方向(包括方位和指向)和作用点,这三个因素称为力的三要素。
4、力是矢量。
5、力系:作用在物体上的若干个力总称为力系。
6、等效力系:如果作用于物体上的一个力系可用另一个力系来代替,而不改变原力系对物体作用的外效应,则这两个力系称为等效力系或互等力系。
7、刚体就是指在受力情况下保持其几何形状和尺寸不变的物体,亦即受力后任意两点之间的距离保持不变的物体。
8、平衡:工程上一般是指物体相对与地面保持静止或做匀速直线运动的状态。
9、要使物体处于平衡状态,作用于物体上的力系必须满足一定的条件,这些条件称为力系的平衡条件;作用于物体上正好使之平衡的力系则称为平衡力系。
第二节静力学公理1、二力平衡公理:作用于同一刚体上的两个力,使刚体处于平衡状态的必要与充分条件是:这两个力大小相等,方向相反,且作用于同一条直线上(简称等值、反向、共线)。
2、对于刚体来说,这个条件既是必要的又是充分的,但对于变形体,这个条件是不充分的。
3、加减平衡力系公理:在作用于刚体的力系中,加上或减去任意平衡力系,并不改变原力系对刚体的效应。
4、力的可传性原理:作用于刚体上的力,可沿其作用线移动至该刚体上的任意点而不改变它对刚体的作用效应。
5、力的平行四边形法则:作用于物体上同一点的两个力,可以合成为一个合力,合理也作用在该点上,合力的大小和方向则由以这两个分力为邻边所构成的平行四边形的对角线来表示。
6、这种合成力的方法叫矢量加法。
7、作用与反作用定律:两物体间相互作用的力,总是大小相等,方向相反,且沿同一直线。
8、刚化原理:变形体在已知力系作用下处于平衡,如设想将此变形体刚化为刚体,则其平衡状态不会改变。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:3R F KN== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300ACAB FF -=0Y =∑ cos300ACFW -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700ACAB FF -=0Y =∑ sin 700ABFW -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300ACAB FF -=0Y =∑ sin 30sin 600ABAC FF W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑cos 450RA F P -=15.8RA F KN∴=由Y =∑sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --= 0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN= (压力) 5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x=∑cos60cos300AC ABF F W⋅--= 0Y=∑sin30sin600AB ACF F W+-=联立上二式,解得:7.32ABF KN=-(受压)27.3ACF KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由x=∑sin cos0DBT Wαα-=DBT Wctgα∴==(2)取B点列平衡方程:由Y=∑sin cos0BDT Tαα'-=230BDT T ctg Wctg KNαα'∴===2-10解:取B为研究对象:由0Y =∑ sin 0BC F P α-= sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑ cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑ sin sin 300RAFP α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q =联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
工程力学重心坐标公式工程力学是研究物体运动和受力学的学科,重心坐标是其中的一个重要概念。
重心坐标指的是一个物体所受作用力在整个物体内产生的等效力的作用点,通常被称为质心或重心。
了解重心坐标公式是掌握工程力学的基础之一。
重心坐标公式是一个简单的数学公式,但它对于计算机械、航空航天、建筑等工程领域中的机械与结构分析十分关键。
重心坐标公式可以使工程师在设计和制造物体时更好地掌握物体的平衡性和稳定性。
如果物体由n个部分组成,每个部分具有一定的质量mi,坐标为(xi,yi,zi),并且重心坐标为(xg,yg,zg),其公式如下:xg = (Σmixi)/(Σmi)yg = (Σmiyi)/(Σmi)zg = (Σmizi)/(Σmi)其中,xg、yg、zg分别代表物体的重心坐标,Σmi表示物体的总质量,而M<sub>i</sub>x<sub>i</sub>、M<sub>i</sub>y<sub>i</sub>、M<sub>i</sub>z<sub>i</sub>分别为每个部分的质量与坐标的乘积之和。
通常,在把物体扁平或放到倾角较大的位置时,重心的位置会被改变,需要通过应用重心坐标公式来重新计算物体的重心。
通过重心坐标公式,工程师可以计算出物体在受力作用下的平衡点,从而确保安全的设计和制造,并避免不稳定的情况的发生。
在某些模拟软件中,例如SolidWorks和CATIA,重心坐标公式也被用来计算物体的重心位置。
总的来说,重心坐标公式在工程力学领域扮演了非常重要的角色。
掌握了重心坐标公式,可以更好地理解、设计和分析各种机械和结构。
在实际应用中,要根据具体情况,合理运用重心坐标公式,以避免物体遇到外力后失去平衡、破坏等情况的发生。