第四章静电场中的导体
- 格式:pptx
- 大小:1.32 MB
- 文档页数:81
大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
大学物理电磁学公式总结➢ 第一章(静止电荷的电场)1. 电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2. 库仑定律:两个静止的点电荷之间的作用力F =kq 1q 2r 2e r =q 1q 24πε0r 2e r3. 电力叠加原理:F=ΣF i4. 电场强度:E=Fq, q 0为静止电荷5. 场强叠加原理:E=ΣE i用叠加法求电荷系的静电场:E =∑q i4πε0r i 2e ri i (离散型) E=∫dq4πε0r 2e r q(连续型)6. 电通量:Φe=∫E •dS s7. 高斯定律:∮E •dS s=1ε0Σq int 8. 典型静电场:1) 均匀带电球面:E=0 (球面内)E=q 4πε0r 2e r (球面外)2) 均匀带电球体:E=q 4πε0R3r =ρ3ε0r (球体内)E=q4πε0r 2e r (球体外) 3) 均匀带电无限长直线:E=λ2πε0r ,方向垂直于带电直线4) 均匀带电无限大平面:E=σ2ε0,方向垂直于带电平面9. 电偶极子在电场中受到的力矩:M=p×E➢ 第三章(电势)1. 静电场是保守场:∮E •dr L=0 2. 电势差:φ1 –φ2=∫E •dr (p2)(p1)电势:φp =∫E •dr (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ=q 4πε0r电荷连续分布的带电体的电势:φ=∫dq4πε0r4. 电场强度E 与电势φ的关系的微分形式:E=-gradφ=-▽φ=-(∂φ∂xi +∂φ∂yj +∂φ∂zk )电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
5. 电荷在外电场中的电势能:W=q φ移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2电偶极子在外电场中的电势能:W=-p •E➢ 第四章(静电场中的导体)1. 导体的静电平衡条件:E int =0,表面外紧邻处Es ⊥表面 或导体是个等势体。
部分习题解答第一章 静止电荷的电场1、10 解:(一定要有必要的文字说明)在圆环上与角度θ相应的点的附近取一长度dl ,其上电量 dq =λdl =0λsinθdl ,该电荷在O 点产生的场强的大小为==204RdqdE πε2004sin R dl πεθλθπελsin 400R =θd dE 的方向与θ有关,图中与电荷 dq 对O 点的径矢方向相反。
其沿两坐标轴方向的分量分别为 θθθπελθd RdE dE x cos sin 4cos 00-=-=θθπελθd RdE dE y 200sin 4sin -=-=整个圆环上电荷在圆心处产生的场强的两个分量分别为==⎰x x dE E R004πελ-⎰=πθθθ200cos sin d==⎰Y y dE E R004πελ-⎰-=πελθθ200024sin Rd 所以圆心处场强为 E = E y j = R004ελ-j 1、11 解:先将带电系统看成一个完整的均匀带电圆环计算场强,然后扣除空隙处电荷产生的场强;空隙的宽度与圆半径相比很小,可以把空隙处的电荷看成点电荷。
空隙宽度m d 2102-⨯=,圆半径m r 5.0=,塑料杆长m d r l 12.32=-=π 杆上线电荷密度m C lq/1019-⨯==λ 一个均匀带电圆环,由于电荷分布关于圆心对称,环上对称的二电荷元在圆心处产生的场强互相抵消,因而整个圆环在圆心处的场强E 1= 0 空隙处点电荷设为q /,则q / =d λ,他在圆心处产生的场强m V rdr q E /72.0442020/2===πελπε 方向由空隙指向圆心。
空隙处的电荷实际上不存在,因此圆心处场强等于均匀带电圆环在该点产生的场强与空隙处电荷在该点产生的场强之差,故m V E E E /72.021-=-= 负号表示场强方向从圆心指向空隙。
1、12 解:设想半圆形线CAD 与半圆形线ABC 构成一个圆形如图,且圆上线电荷密度均为λ。
静电场中的导体2.1 填空题2.1.1 一带正电小球移近不带电导体时,小球将受到( )力作用;一带负电小球移近不带电导体时,小球将受到( )力作用;一带正电小球靠近不带电的接地导体时,小球将受到( )力作用。
2.1.2 在一个带正电的大导体附近P 点放置一个点电荷q(电荷q 不是足够小),实际测得它的受力为F ,如果q>0, 则F/q 与P 点场强E 0关系为( ),如果q<0, 则F/q 与P 点场强关系为( )2.1.3 导体在静电场中达到静电平衡的条件是( )和( )。
2.1.4 导体处于静电平衡状态时,导体内部电荷体密度( ),电荷只能分布在( )。
2.1.5 导体处于静电平衡状态时,导体是( )体,表面是( )面。
2.1.6 接地导体的电势等于( ),地球与( )等电势。
2.1.7 一导体球壳,内外半径分别为R 1和R 2,带电q ,球壳内还有一点电荷q ,则导体球壳的电势是( )。
2.1.8 一点电荷q 放在一接地的无限大导电平面附近,则导电平面上的总电量为( )。
2.1.9 将一个点电荷+q 移近一个不带电的导体B 时,则导体B 的电势将( )。
2.1.10 一封闭导体壳C 内有一些分别带q 1、q 2…的带电体,导体壳C 外也有一些分别带Q 1、Q 2…的带电体,则q 1、q 2…的大小对导体壳C 外的电场强度( )影响,对C 外的电势( )影响;Q 1、Q 2…的大小对导体壳C 内的电场强度( )影响,对C 内的电势( )影响。
2.1.11 两个同心导体球壳A 、B ,若内球B 上带电q ,则电荷在其表面上的分布呈( )分布;当从外边把另一带电体移近这两个同心球时,则内球B 上的分布呈( )分布。
2.1.12 两导体球半径分别为r A 和r B ,A 球带电q ,B 球不带电,现用一细导线连接,则分布在两球上的电荷之比Q A ∶Q B ( )。
2.1.13 在带等量异号电荷的二平行板间的均匀电场中,一个电子由静止自负极板释放,经t 时间抵达相隔d 的正极板,则两极板间的电场为( ),电子撞击正极板的动能为( )。
《静电场中的导体》习题一、判断题1在带正电的导体A附近,有一不接地的中性导体B,则A离B越近时,A 的电位越低。
[]2、接地导体,其表面必处处无电荷。
[]3、静电平衡时,电力线不能由导体一端的正电荷发出而终止于该导体另一端的负电荷。
[]4、静电感应达到平衡时,凡是接地导体必不带电。
[]5、由于静电感应,在导体表面的不同区域出现异号电荷,因而导体不再是等位体。
[]6、由于中性导体壳B对带电体A的屏蔽作用,带电体A的电场将对验电器C 无影响。
[]7、由于静电屏蔽作用,空腔导体内的带电体在腔外产生的场强为零。
[ ]8静电平衡时,导体表面是等位面,所以导体表面附近的场强大小处处相等。
[]二、选择题:1、在串联电容电路中,若电压逐渐升高,对耐压值相同的电容器来说,先击穿的将是[]A、电容值小的B、电容值大的C、同时击穿D无法确定2、在一个带正电荷,电量为Q的大导体附近P点放一个带电量也为Q的点电荷,若此时点电荷受到的斥力大小为F,则F/Q与未放置此点电荷时场强E相比()A、大于B、相等C、小于3、在一带电为Q的导体壳A内有一接地的导体球B,A与B不接触,静电平衡时导体球B上所带电量q,则q为()A、零;B、符号与Q相反,且(q<QC、符号与Q相同,且(q <Q4、两个同心得均匀带电球面,半径分别为R i和R2,且R2=2R I,内球面带正电荷q i,要使内球面的电位为正值,则外球面的电量q2必须满足[ ](1)内、外场强分布均匀⑶内外场强分布都不均匀10、如右图所示,将一个带正电的金属小球移近一个A 、q 2>-q iB 、q 2>-2q iC 、q 2=-2q iD 、q 2<-2q i5、 平行板电容器充电后与电源断开,然后使极板间距增大,则 []A C T UJ E JB 、C J UT E T C 、C J UT E 不变D C T UJE 不变6、 如图所示,三个无限大均匀带电平面,面电荷密度均为 c,相互平行放置,E 沿x 正方向为正,则P 点的E 为[]A3b f 3cr cr a A 、… B 、 C 、 D 、2 2电 2心 2昴_ | d .6 如图所示,已知 C i =6 卩 F ,C 2=3 卩 F ,R=6Q, R 2=3Q ,若IU de =18V,则a 、b 两点间的电压为[]y l L 3i-' A 、0 B -6V C 、6V D 12V脸 T c?7、 中性金属球壳A 内有一带电体B ,如图所示各个电场线图 匸中,哪一个图正确地表示出球壳内外的场强分布 []&如图 所示,导体空腔腔内有一电荷q 和测量仪器A,腔外有一电荷Q 和测量仪器B ,则测量 仪器测得的结果是[]A 、 只测到q 的场,B 只测到Q 的场 B 、 A 只测到q 的场,B 能测到q 和Q 的场C 、 A 能测到q 和Q 的场,B 只能测到Q 的场D A 能测到q 和Q 的场,B 也能测到q 和Q 的场9、在一金属壳的内部放一点电荷 (不在导体壳中心),则金属壳内外电场分布((2)内场强不均匀,外场强均匀 (4)内场强均匀,外场强不均匀绝缘的不带电的导体时,贝u ( )(1)A 端电势高 (2)B 端电势高 (3)电势相等 (4)电势相等11、 有两个半径均为R ,分别带电+Q 和-Q 的金属球,球心相距为d , (d>R ),它 们的相互作用力大小为F i 。